51,626 research outputs found

    Learning flexible representations of stochastic processes on graphs

    Full text link
    Graph convolutional networks adapt the architecture of convolutional neural networks to learn rich representations of data supported on arbitrary graphs by replacing the convolution operations of convolutional neural networks with graph-dependent linear operations. However, these graph-dependent linear operations are developed for scalar functions supported on undirected graphs. We propose a class of linear operations for stochastic (time-varying) processes on directed (or undirected) graphs to be used in graph convolutional networks. We propose a parameterization of such linear operations using functional calculus to achieve arbitrarily low learning complexity. The proposed approach is shown to model richer behaviors and display greater flexibility in learning representations than product graph methods

    Process Monitoring on Sequences of System Call Count Vectors

    Full text link
    We introduce a methodology for efficient monitoring of processes running on hosts in a corporate network. The methodology is based on collecting streams of system calls produced by all or selected processes on the hosts, and sending them over the network to a monitoring server, where machine learning algorithms are used to identify changes in process behavior due to malicious activity, hardware failures, or software errors. The methodology uses a sequence of system call count vectors as the data format which can handle large and varying volumes of data. Unlike previous approaches, the methodology introduced in this paper is suitable for distributed collection and processing of data in large corporate networks. We evaluate the methodology both in a laboratory setting on a real-life setup and provide statistics characterizing performance and accuracy of the methodology.Comment: 5 pages, 4 figures, ICCST 201

    Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning

    Full text link
    The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the first level of this architecture, we decompose the fMRI signal into multiple sub-bands using wavelet decompositions. At the second level, for each sub-band, we estimate a brain network extracted from short time windows of the fMRI signal. At the third level, we feed the adjacency matrices of each mesh network at each time-resolution into an unsupervised deep learning algorithm, namely, a Stacked De- noising Auto-Encoder (SDAE). The outputs of the SDAE provide a compact connectivity representation for each time window at each sub-band of the fMRI signal. We concatenate the learned representations of all sub-bands at each window and cluster them by a hierarchical algorithm to find the natural groupings among the windows. We observe that each cluster represents a cognitive task with a performance of 93% Rand Index and 71% Adjusted Rand Index. We visualize the mean values and the precisions of the networks at each component of the cluster mixture. The mean brain networks at cluster centers show the variations among cognitive tasks and the precision of each cluster shows the within cluster variability of networks, across the subjects.Comment: 6 pages, 3 figures, submitted to The 17th annual IEEE International Conference on BioInformatics and BioEngineerin
    • …
    corecore