110,626 research outputs found

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa

    Explaining Explanation

    Get PDF
    It is not a particularly hard thing to want or seek explanations. In fact, explanations seem to be a large and natural part of our cognitive lives. Children ask why and how questions very early in development and seem genuinely to want some sort of answer, despite our often being poorly equipped to provide them at the appropriate level of sophistication and detail. We seek and receive explanations in every sphere of our adult lives, whether it be to understand why a friendship has foundered, why a car will not start, or why ice expands when it freezes. Moreover, correctly or incorrectly, most of the time we think we know when we have or have not received a good explanation. There is a sense both that a given, successful explanation satisfies a cognitive need, and that a questionable or dubious explanation does not. There are also compelling intuitions about what make good explanations in terms of their form, that is, a sense of when they are structured correctly

    The Pragmatic Turn in Explainable Artificial Intelligence (XAI)

    Get PDF
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will lack a well-defined goal. Aside from providing a clearer objective for XAI, focusing on understanding also allows us to relax the factivity condition on explanation, which is impossible to fulfill in many machine learning models, and to focus instead on the pragmatic conditions that determine the best fit between a model and the methods and devices deployed to understand it. After an examination of the different types of understanding discussed in the philosophical and psychological literature, I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post hoc interpretability. This conclusion is partly based on the shortcomings of the purely functionalist approach to post hoc interpretability that seems to be predominant in most recent literature

    Understanding from Machine Learning Models

    Get PDF
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding misguided? In this paper, using the case of deep neural networks, I argue that it is not the complexity or black box nature of a model that limits how much understanding the model provides. Instead, it is a lack of scientific and empirical evidence supporting the link that connects a model to the target phenomenon that primarily prohibits understanding

    Design and anticipation: towards an organisational view of design systems

    Get PDF
    • …
    corecore