2 research outputs found

    Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification: Weighted Sparse Group Model for MCI Classification

    Get PDF
    Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method

    Deep Learning via Stacked Sparse Autoencoders for Automated Voxel-Wise Brain Parcellation Based on Functional Connectivity

    Get PDF
    Functional brain parcellation – the delineation of brain regions based on functional connectivity – is an active research area lacking an ideal subject-specific solution independent of anatomical composition, manual feature engineering, or heavily labelled examples. Deep learning is a cutting-edge area of machine learning on the forefront of current artificial intelligence developments. Specifically, autoencoders are artificial neural networks which can be stacked to form hierarchical sparse deep models from which high-level features are compressed, organized, and extracted, without labelled training data, allowing for unsupervised learning. This thesis presents a novel application of stacked sparse autoencoders to the problem of parcellating the brain based on its components’ (voxels’) functional connectivity, focusing on the medial parietal cortex. Various depths of autoencoders are investigated, yielding results of up to (68 ± 3)% accuracy compared with ground truth parcellations using Dice’s coefficient. This data-driven functional parcellation technique offers promising growth to both the neuroimaging and machine learning communities
    corecore