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Abstract

Brain functional network analysis has shown great potential in understanding brain functions and 

also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early 

stage, mild cognitive impairment (MCI). In these applications, accurate construction of 

biologically meaningful brain network is critical. Sparse learning has been widely used for brain 

network construction; however, its l1-norm penalty simply penalizes each edge of a brain network 

equally, without considering the original connectivity strength which is one of the most important 

inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain 

network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this 

article, we propose a novel brain functional network modeling framework with a “connectivity 

strength-weighted sparse group constraint.” In particular, the network modeling can be optimized 

by considering both raw connectivity strength and its group structure, without losing the merit of 

sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD 

diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients 

and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a 

significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse 

representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows 

more biologically meaningful brain functional connectivities obtained by our proposed method.
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Introduction

Study of brain functional network based on resting-state functional magnetic resonance 

imaging (rs-fMRI) has shown great potential in understanding brain functions and also 

identifying biomarkers for neurological and psychiatric disorders (Fornito et al., 2015; 

Wernick et al., 2010). Accurate construction of brain functional network from regional rs-

fMRI time series is an essential step prior to the subsequent statistical analysis or disease 

classification (Eguiluz et al., 2005; Rubinov and Sporns, 2010; Van Den Heuvel and Pol, 

2010). Many approaches for brain functional network modeling have been proposed in the 

past (Smith et al., 2011). One of the most popular ways is to represent a brain network as a 

graph that comprises nodes and edges (Sporns et al., 2004; Supekar et al., 2008). The 

definitions of nodes and edges in a graph may differ in scale, but in this article, we construct 

a macroscopic brain functional network by treating the brain regions, or regions of interest 

(ROIs) from predefined atlas (Craddock et al., 2012; Tzourio-Mazoyer et al., 2002), as nodes 

and the functional connectivity (estimated using the observed regional mean blood-oxygen-

level-dependent [BOLD] time series) between each pair of regions as an edge (Smith et al., 

2011).

With the above definitions, the most popular approaches for brain network modeling are 

based on inter-regional Pearson's correlation (PC) (Hampson et al., 2002; Power et al., 2011; 

Wee et al., 2012) and partial correlation (Fransson and Marrelec, 2008; Salvador et al., 

2005). While the former is easy to understand and can capture pairwise functional 

relationship based on a pair of regions, the latter can account for more complex interactions 

among multiple brain regions. But the estimation of partial correlation involves an inversion 

of a covariance matrix, which may be ill-posed due to the singularity of the covariance 

matrix. To overcome this issue, a number of representative approaches with l1-norm 

regularization have been introduced by adding a sparsity term since the brain network is 

believed to be sparse, i.e., some insignificant or spurious connections caused by the low 

frequency (<0.1 Hz) fluctuation of BOLD signals (Fransson, 2005) and physiological noise 

are forced to be zero, thus making the constructed sparse connectivity relatively easier to be 

interpreted. To a certain extent, the constructed sparse brain network is neurologically 

justified by the fact that brain regions have only “first-order/direct” interactions with a few 

regions, instead of connecting with all brain regions. Two major types of representative 

approaches, i.e., l1-norm regularized maximum likelihood estimation (Huang et al., 2009; 

Rosa et al., 2015; Yuan and Lin, 2006), a.k.a. graphical LASSO (Friedman et al., 2008), and 

l1-norm regularized linear regression or sparse representation (SR) (Meinshausen and 

Bühlmann, 2006; Peng et al., 2009), have been widely applied to construct brain network for 

brain disease studies, such as Alzheimer's disease (AD), mild cognitive impairment (MCI) 

(Huang et al., 2010), and autism spectrum disorder (Lee et al., 2011). More recent 

representative approaches also take group structure into consideration by adding a group 

sparsity constraint because of the modular structure of the human brain (Rubinov and 

Sporns, 2010). To further introduce sparsity within each group, sparse group representation 

(SGR) has been developed by combining l1-norm and lq,1-norm constraints, which finally 

achieves both inter- and intra-group sparsity (Jiang et al., 2015).
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A common issue of all the aforementioned sparsity-based network construction methods is 

that the sparse constraint term penalizes each edge equally. In other words, when learning 

SR for a target ROI, the BOLD signals from all other ROIs are treated equally. Such process 

ignores the inherent similarity between BOLD signals of the target ROI and the other ROIs 

during network reconstruction. Consequently, this will usually result in a sparse but difficult-

to-understand “brain network”. We assume in this article that a target ROI's signal is prone 

to be represented by signals from the ROIs whose BOLD activities are highly synchronized 

with the target ROI. Based on this assumption, the constructed sparse brain functional 

network may be more reasonable. On the other hand, not all the weak links to the target ROI 

have to be removed. Instead, with a delicately designed learning-based framework, the 

connectivity network can be learned by minimizing an objective function consisting of both 

a data-fitting term and a “weighted” sparse regularization term. In this way, some ROIs with 

signals weakly correlated to the target ROI can still be kept, as long as they can largely 

reduce the data-fitting error. In this article, we combine the merits of both pairwise 

correlations and the SR to better model the brain functional network. Specifically, we make 

better use of the pairwise correlation from PC to drive sparse model, instead of simply 

discarding this important information. In light of this, we introduce a “functional 

connectivity strength-related” penalty in SR, namely, weighted sparse representation (WSR).

Figure 1 shows the simple example of brain networks constructed by PC, SR, and our 

proposed WSR from real fMRI data. In this proof-of-concept case, the PC-based network is 

denser compared with the two SR-based networks (by SR and our proposed WSR method, 

respectively). Due to equal penalization, the network constructed by SR looks as noisy as a 

random network, probably due to the fact that it often misses many important connections 

that should have close relationships. In contrast, by considering pairwise functional 

connectivity strength (derived from PC) in sparse coding, the links with strong connectivity 

strength are less penalized. By retaining both sparsity and connectivity prior, the network 

constructed by the WSR is thus more biologically meaningful (i.e., having a clearly 

structured connectivity matrix or modular architecture). This is because that the relationship 

between two regions is measured by considering both pairwise correlation and the 

contribution of other regions. Moreover, to further make the penalty consistent within each 

subset of links with similar pairwise connectivity strength, we additionally propose a group 
structure-based constraint in the model. In this way, similar links will share similar penalties 

during network construction. Thus, we can jointly model the whole-brain network, instead 

of independently modeling each ROI; in this way, each ROI's construction will gain benefit 

from other ROIs’ constructions. This joint estimation strategy can result in more biologically 

meaningful brain functional network. We call our method “connectivity strength-weighted 

sparse group representation (WSGR),” which integrates (1) sparsity, (2) functional 

connectivity strength, and (3) group structure in a unified framework.

We hypothesize that, based on our method, brain network construction will be more 

reasonable and better reflect the true functional organization architecture of the human brain. 

To validate this, we conduct experiments on real fMRI data, construct different brain 

functional networks based on our method and other competing methods (PC, SR, and SGR), 

and use these networks to conduct individualized diagnosis of brain disorder (i.e., 

distinguishing MCI subjects from normal controls). The results show that our method, even 
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with simple feature selection and linear support vector machine (SVM), achieves superior 

classification performance compared with other methods. The selected features (i.e., 

network connections) can be utilized as potential biomarkers to guide early intervention of 

AD in the future.

The remainder of this article is organized as follows. In Section 2, we detail the proposed 

brain network construction model. Then, we apply the constructed brain network for MCI 

classification in Section 3. The experiments and results will be given in Section 4, followed 

by discussions and summary in Sections 5 and 6, respectively.

WSGR-Based Brain Network Construction

In this work, we propose a WSGR for brain functional network construction, which 

considers traditional correlation as connectivity strength to guide sparse modeling for brain 

network construction. Overview of the proposed construction framework is shown in Figure 

2.

In a classical brain functional network construction problem, the brain can be parcellated 

into N ROIs according to a certain brain atlas. The regional mean time series of the ith ROI 

can be denoted by a column vector xi = [x1i, x2i, …, xMi] ∈ RM, where M is the number of 

time points in the entire time series, and thus X = [x1, x2, …, xN] ∈ RM×N denotes the data 

matrix of a subject. By modeling brain functional network as a graph, a key step is to 

estimate the connectivity matrix W ∈ RN×N, given the N nodes (i.e., xi, i = 1, 2,…, N), each 

representing an ROI's signal.

The traditional sparse brain network modeling of the ith ROI xi can be formulated as a 

standard l1-norm regularized optimization problem, and the whole-brain network 

construction can be defined as

(1)

where Wji is the estimated functional connectivity between xi and xj after excluding the 

confounding effects of other regions.

Connectivity Strength-Based Weighting and Weighted Sparse Representation (WSR)

The l1-norm regularization involved in Eq. (1) (the second term) penalizes each 

representation coefficient (Wji) with the same weight of one. In other words, it treats each 

ROI equally when reconstructing signals (xi) for a target ROI. Thus, the inherent pairwise 

correlation with respect to xi, i.e., “functional connectivity strength,” is completely discarded 

during the optimization. As a result, this type of sparse modeling methods may tend to select 

only the ROIs with weak connectivities to the target ROI, as long as this can minimize the 

objective function in Eq. (1). Moreover, the representation of one ROI is independent of the 

representations of other ROIs. This “independent representation” can lead to less 

biologically meaningful brain network. The estimated representation coefficients of the 
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functionally similar ROIs could vary largely in an unconstrained way. Considering these 

issues, we argue that the prior functional connectivity strength should be incorporated into 

the brain functional network construction.

Specifically, we can introduce a connectivity strength-weighted sparse penalty in Eq. (1) to 

take the strength of functional connectivity into account. We suppose that if the BOLD 

signals of two ROIs have a high correlation, indicating a strong link between each other, 

then this strong functional link should be less penalized to make it more possible to be 

chosen to represent the target ROI. Meanwhile, a weak functional link will be penalized 

more, i.e., with a larger weight, to impede it being chosen. In this way, the constructed 

sparse brain functional network will be more reasonable.

The penalty weight Cji, i.e., the link between the ith ROI xi and the jth ROI xj, can be defined 

as an exponential function of the PC coefficient:

(2)

where Pji is the PC coefficient between the ith ROI xi and the jth ROI xj, and σ is a positive 

parameter used to adjust the weight's decay speed for the connectivity strength adaptor. 

Accordingly, the connectivity strength-WSR can be formulated as

(3)

where C ∈ RN×N is the connectivity strength adaptor matrix, with each element Cji being 

inversely proportional to the similarity (i.e., PC coefficient) between the signals in jth ROI xj 

and the signals in the target ROI xi.

Grouping of Similar Subnetworks and Weighted Sparse Group Representation (WSGR)

Note that the above reconstruction of xi, i.e., the ith ROI's construction, is independent of the 

reconstructions of others. To further make the connectivity strength-weighted penalty 

consistent across all links which have similar functional connectivity strength, we propose a 

group constraint on the similar links (within a subnetwork) for allowing them to share the 

same penalty during the whole-brain network construction. In this way, we can model the 

whole-brain network jointly, instead of separately modeling each ROI. Of note, we use 

connectivity strength to group the ROIs into subnetworks although existing other grouping 

ways, such as using diffusion tensor image-based tractography to group the ROIs.

To identify the group structure in the brain network, we partition all links, i.e., pairwise 

connections among ROIs, into K nonoverlapping groups based on the PC coefficients. 

Specifically, assuming that the numerical range of the absolute value of the PC coefficient |

Pij| is [Pmin, Pmax] with Pmin ≥ 0 and Pmax ≤ 1, we partition [Pmin, Pmax] into K uniform and 

nonoverlapping partitions with the same interval Δ = (Pmax − Pmin)/K. Then, the kth group 
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can be defined as Gk = {(i, j)‖Pij| ∈ [Pmin + (k−1)Δ, Pmin+kΔ]}. Figure 3 shows an exemplar 

grouping results with K = 5 from a randomly selected subject, for illustration purpose.

To integrate constraints on functional connectivity strength, group structure, as well as 

sparsity in a unified framework, we propose a novel weighted sparse group regularization as 

formulated below:

(4)

where  is lq-norm (with q = 2 in this work). dk is a predefined 

weight for the kth group, i.e., , where  and |Gk| 

represents the number of links in the kth group (Gk). σ is the same parameter in Eq. (2), 

which is set as the mean of all subjects’ standard variances of absolute PC coefficients. After 

obtaining groups, with E1 < E2 <… < EK, we can penalize the group with higher Ek by 

smaller dk and vice versa. Eq. (4) can also be expressed in a matrix form as follows:

(5)

where  is the F-norm of matrix, ⊙ denotes the elementwise 

multiplication. Unless specifically noted, we denote  in this article. To 

avoid a trivial solution of W=I, we further enforce the constraint Wii=0, equivalent to 

remove signals of the ith ROI from X when representing itself.

In Eq. (5), the first regularizer (which can be regarded as l1-norm penalty) controls the 

overall sparsity of the reconstruction model, and the second regularizer (lq,1-norm penalty) 

contributes the sparsity at the group level. λ1 and λ2 are the two parameters used to balance 

the tradeoff between the (first) l1-norm regularization and the (second) group regularization 

in the objective function. It is noteworthy that our proposed model can be treated as a 

generalized form of sparse brain construction models. Specifically, if Cji=1 and λ2 = 0 in 

Eq. (4), our model reduces to the SR model. If λ2 = 0, it will degrade to the WSR model. 

Moreover, if Cji = 1, the proposed method shares the same formulation with the SGR (Simon 

et al., 2013). In the experimental section, we also include these three special cases for 

comparison. To our best knowledge, (1) using the connectivity strength-based weights 

derived from PC to guide brain network modeling and (2) using the connectivity strength to 

group subnetworks have not been reported in the previous studies.
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MCI Classification

MCI, as an intermediate stage of brain cognitive decline between AD and normal aging, 

shows mild symptoms of cognitive impairment. Individuals with MCI may progress to AD 

with an average conversion rate of 10–15% per year, and more than 50% within 5 years 

(Gauthier et al., 2006; Petersen et al., 2001). Thus, accurate and early diagnosis of MCI is 

crucial to reduce the risk of developing AD and the possible delay of dementia with 

appropriate pharmacological treatments and behavioral interventions. Functional 

connectivity analysis has shown potential in diagnosis of MCI before appearing of clinical 

symptoms (Chen et al., 2016; Fox and Raichle, 2007; Friston et al., 1993; Greicius, 2008; 

Rombouts et al., 2005; Sorg et al., 2007; Wang et al., 2007). But its performance depends on 

the accuracy of constructed brain network. Therefore, we use MCI identification as a way 

for validating our proposed brain network construction model.

Specifically, the estimated brain network is applied to classify MCI and normal control (NC) 

subjects. Note that the connectivity matrix W learned from SR-based methods could be 

asymmetric. Thus, similar to other related works (Elhamifar and Vidal, 2013; Lee et al., 

2011; Wee et al., 2014), we simply make it symmetric as W* = (W+WT)/2, and then use W* 

to represent the final network, which has N(N−1)/2 effective links due to the symmetry of 

W*. These links are treated as a feature vector to represent each subject, with the 

dimensionality of 4005 when N = 90. For feature selection, we use a two-sample t-test with 

the significance level of p < 0.05 to select features that significantly differ between MCI and 

NC groups. Figure 4 shows the classification process. Note that only the training data 

participate in the feature selection part. The dimension of testing data will be reduced 

according to the selected feature indices provided by the above t-test-based feature selection. 

After feature selection, we employ a linear SVM (Chang and Lin, 2011), with default cost 

parameter c = 1, for classification.

Experiments

Subjects and Data

The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (Jack et al., 2008) is used 

in this study. Specifically, 50 MCI patients and 49 NCs are selected from the ADNI-2 

dataset in our experiments. This study has been performed in accordance with the ethical 

standards as laid down in the 1964 Declaration of Helsinki and its later amendments. 

Informed consent was obtained from all individual participants included in the study. 

Subjects from both classes are age- and gender-matched, and they were all scanned using 3.0 

T Philips scanners. For details of imaging parameters, please check adni.loni.ucla.edu. In 

preprocessing, SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/) is used to preprocess the 

rs-fMRI data according to the well-accepted pipeline (Rubinov and Sporns, 2010). 

Specifically, the first 3 volumes of each subject are discarded before preprocessing for 

magnetization equilibrium. Then, rigid-body registration is used to correct head motion (but 

the subjects with overall head motion larger than 2 mm or 2° during scanning are discarded). 

The fMRI images are normalized to the Montreal Neurological Institute (MNI) space and 

spatially smoothed with a Gaussian kernel with full-width-at-half-maximum (FWHM) of 6 × 

6 × 6 mm3. To reduce the negative effect on brain network modeling caused by excessive 
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framewise head motion, we estimate framewise head motion and exclude subjects who have 

too many frames with excessive framewise head motion. Specifically, we calculate 

framewise displacement (FD) based on Power et al.'s (2011) algorithm and exclude the 

subjects with more than 2.5 min (50 frames) data of FD > 0.5 from further analysis (Wu et 

al., 2015). However, we do not censor the data of the remaining subjects to ensure them to 

have the equal number of rs-fMRI data, to make the functional connectivity network 

modeling results comparable across subjects. Head motion parameters (i.e., Friston-24 

model) and the mean BOLD time series of white matter and cerebrospinal fluid are 

regressed out from the band-pass filtered (0.01−0.08 Hz) rs-fMRI data.

Brain Functional Network Construction

For each subject, the mean rs-fMRI signals extracted from N = 90 ROIs defined by 

Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al., 2002) are 

utilized to model brain functional network. For comparison, we also construct brain 

networks using two basic methods, PC and SR. To further explore the effects of both the 

proposed connectivity strength-based weighting and structure-grouping, we have also 

compared our proposed WSGR with both SGR (without weight C) and WSR (without group 

constraint). Their matrix-regularized objective functions are provided in Table I.

The optimization of the objective functions of the SGR and WSGR models can be solved by 

the Moreau–Yosida regularization associated with the sparse group Lasso penalty (Liu and 

Ye, 2010). All the SR models in this article are solved using SLEP toolbox (Liu et al., 2009), 

and W is initialized with zero matrix.

Figure 5 shows the visualization of the constructed brain functional networks from a 

randomly selected subject using five different methods separately. As can be seen from 

Figure 5a, the intrinsic grouping in brain connectivity is observed, whereas the PC-based 

brain network is very dense. All the networks constructed from the SR models are sparse. 

Regarding the effectiveness of using the connectivity strength-based weights, we can see that 

the sparse constraint with the connectivity strength-based weights (Figure 5d,e) is more 

reasonable in modeling brain functional network than its counterparts without weights 

(Figure 5b,c). Compared with the traditional SR models, some connections with high 

connectivity strength are enhanced by the WSR models, and vice versa. This validates the 

effectiveness of our proposed method which integrates the pairwise correlation and the 

sparse learning. Regarding the grouping constraint used, the group structure is more obvious 

in Figure 5e by our WSGR method than in Figure 5d by WSR.

Classification Results

After constructing the brain functional networks, we regard the connections as features for 

MCI classification. A leave-one-out cross-validation (LOOCV) strategy is adopted in our 

experiments. To set the values of the regularization parameter (i.e., λ in SR and WSR, and 

λ1, λ2 in SGR and WSGR), we employ a nested LOOCV strategy on the training set to 

grid-search the respective parameter values in the range of 2−5,2−4, …, 21,22].

Specifically, given a total of S subjects, one of them is left out for testing, and the remaining 

S–1 subjects are used for training. Then, we select the optimal parameter values by grid-
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searching on the training set with the nested LOOCV strategy. Specifically, among these S–1 

subjects, a training subset with S–2 subjects was formed by leaving one training subject out 

to test in the nested LOOCV procedure (based on the t-test with default p < 0.05 for feature 

selection, and the linear SVM with default c = 1 for classification). Thus, there are S−1 

different training subsets and S−1 corresponding testing samples. The combination of 

regularization parameters that gives the best performance is selected as the optimal 

parameters. Then, by backing to the training set with S−1 subjects, we apply the optimal 

regularization parameters onto the S−1 different training subsets, each with S−2 subjects. 

Note, there are S−1 classifiers that are used to classify the completely unseen testing subject. 

The final classification decision is determined via majority voting. Every subject in the 

whole dataset will be left out for testing, so the above process repeats S times. Finally, an 

overall cross-validation classification accuracy is calculated.

To evaluate the classification performance, we use seven evaluation measures: accuracy 

(ACC), sensitivity (SEN), specificity (SPE), area under curve (AUC), Youden's index (YI), 

F-score, and balanced accuracy (BAC). The detailed definitions of these seven statistical 

measures except area under ROC curve (AUC) are provided in Table II, where TP, TN, FP, 

and FN denote the true positive, true negative, false positive, and false negative, respectively, 

and  and . In this article, we treat the MCI samples as 

positive class and the NC samples as negative class.

As shown in Figure 6, the proposed brain network construction model (using weighted 

group sparsity) achieves the best classification performance with an accuracy of 84.85%, 

followed by WSR with an accuracy of 79.80%. By comparing these results, we can verify 

the effectiveness of connectivity strength-based weights from two aspects. First, it can be 

observed that the WSR model with connectivity strength-based weights performs much 

better than PC and SR models. Second, the classification result of the WSGR model 

outperforms the SGR model (with an accuracy of 72.73%). Similarly, by comparing the 

results of the SR and WSR models with those of the SGR and WSGR models, the 

effectiveness of our introduced group structure-based penalty can be well justified. The 

superior performance of our method suggests that the weighted group sparsity is beneficial 

in constructing brain networks and is also able to improve classification performance. Figure 

6b shows the ROC curves of different methods. To further confirm the statistical significance 

of classification results by different methods, we adopt the DeLong's (1988) test, which 

allows for the comparison of two ROC curves calculated on the dataset, by performing a 

nonparametric statistical test. The results show that our proposed WSGR significantly 

outperforms PC, SR, WSR, and SGR under 95% confidence interval with p values = 

1.41×10−6, 3.61×10−6, 0.06 and 0.01 respectively.

Discussions

Top Discriminative Features

As the selected features by two-sample t tests in each validation might be different, we 

record all the selected features during the training process. There are 47 features that are 

consistently selected in all validations, as visualized in Figure 7, where the red arcs represent 
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the features related to the default mode network (DMN) that have been commonly regarded 

as AD-pathology related (Greicius et al., 2004; Teipel et al., 2015). According to previous 

studies (Fair et al., 2008; Fox et al., 2005), the detailed names for the ROIs related with 

DMN are listed in the Table I in Supporting Information. Interestingly, most of these 

consistently selected discriminative features are the DMN-related connectivities. The grey 

arcs in Figure 7 denote the consistently selected discriminative features outside the DMN, 

including the olfactory cortices, middle orbitofrontal cortices, fusiform, caudate, and so on.

The linear SVM classification model obtained on the training data in each cross-validation is 

a maximum-margin hyperplane, represented by the learned weight coefficients for all 

selected features. To further study the connectivity pattern that contributed to MCI 

identification, we average the weight coefficients of each selected feature across all the 

cross-validations to analyze the linear classification model. All consistently selected 

connectivities shown in Figure 7 are displayed in Figure 8 in the full brain view (see also 

Table II in Supporting Information for detailed connections). Specifically, the nodes here 

represent the ROIs, with their sizes indicating the sum of weights connecting to each ROI 

(which can be regarded as the degree of the nodes in the brain network), and the edges 

represent the connections (or features used in this article) with their thickness indicating the 

corresponding weights in classification pattern.

The 11 discriminative regions, which have at least three connection features among all the 

consistently selected features, are shown in Figure 9. Specifically, the right inferior 

orbitofrontal cortex and right olfactory cortex are highly related to AD pathology, according 

to previous studies (Tekin and Cummings, 2002). The left superior medial frontal cortex, 

right anterior cingulate cortex, left inferior parietal lobule, and left inferior temporal gyrus 

are within the DMN. The right caudate, right putamen, and right pallidum are subcortical 

regions with dense connections to the cortex, which are important for MCI classification 

(Albert et al., 2011).

Sensitivity to Network Model Parameters

To investigate the sensitivity of our model to the involved regularization parameters, i.e., λ1 

and λ2, we have also conducted an experiment that discards the nested LOOCV parameter 

selection on the training set. We directly compute the classification accuracy under different 

parameter combinations in the proposed WSGR method with LOOCV. The classification 

accuracies are shown in Figure 10. It can be observed that the results change with different 

values of the regularized parameters, and the best accuracy (87.88%) is achieved with λ1=20 

for (weighted) sparsity and λ2=2−4 for group sparsity. Note that to validate the effectiveness 

of our proposed method, we adopt the grid-searching strategy to select the optimal 

regularization parameters within the training data, while leaving the testing data for 

validation. The optimal parameters selected automatically in different validations are not 

fixed. The performance of our method with such grid-searching strategy achieves 84.85% 

accuracy, which is close to the highest accuracy 87.88% with specific parameter values.
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Related Works

In this work, we proposed the connectivity strength-WSGR model for constructing the brain 

functional network. In terms of the l1-norm regularization term, it is not only for statistical 

estimation but also for providing a principled way of incorporating sparsity priors (as brain 

region predominantly interacts with only a small number of other regions) into a network 

learning framework. Many neuroscience studies have already suggested that the brain 

network is sparse (Sporns, 2011). For the group sparsity by lq,1-norm, there are some similar 

models on the network construction in the literature. For example, Varoquaux et al. (2010) 

used group sparsity prior (lq,1-norm regularizer) to constrain all subjects within the same 

group to share the same network topology. Wee et al. (2014) used the similar group-

constrained sparsity to overcome intersubject variability in the brain network construction. 

In their works, each ROI's representation was still independent to each other, and they did 

not consider the connectivity strength during the SR.

In terms of combining l1-norm constraint with lq,1-norm constraint, a recent work (Jiang et 

al., 2015) defined “group” based on the anatomical connectivity using diffusion tensor 

imaging, and then applied SGR to construct brain functional network using whole-brain rs-

fMRI signals. Compared with their work, our method proposes to define the group by using 

the intrinsic connectivity strength derived from the rs-fMRI data, which does not need any 

additional imaging data that sometimes may not be available. In addition, we have added 

connectivity strength-based weights to the l1-norm constraint, for constructing more 

reasonable brain functional network.

Conclusion

In this article, we have proposed a novel method with WSGR to optimally construct brain 

functional network from rs-fMRI data. We have taken the advantage of both Pearson's 

correlation and SRs, which are the two most used brain network modeling approaches, to 

ensure the construction of more biologically meaningful brain network by a unified 

framework that integrates connectivity strength, group structure, and sparsity. Our proposed 

method has been validated in the task of MCI and NC classification, obtaining superior 

results compared to other brain network construction approaches. In future, we plan to work 

on more effective grouping strategy, i.e., partitioning the links into the overlapping groups, 

to model more meaningful brain networks. Moreover, our method can be applied to various 

brain disorders and diseases, such as autism and Parkinson's disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of our motivation. Note that these networks are obtained from real rs-fMRI data 

(where all values are absolute). The black boxes in the matrices are used to show the 

corresponding effect of the connectivity strength-based weights in the constructed brain 

network. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2. 
Framework of the proposed brain functional network construction. Given brain functional 

signals X, we can compute a Pearson's correlation (PC) matrix P, which will be used to 

define both the connectivity strength weight C for the l1-norm and the group partition for the 

l2,1-norm in the proposed model. The brain network W will be constructed with 

optimization. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3. 
Illustration of similar subnetwork grouping for a randomly selected healthy subject in our 

data-set. (a) Pearson correlation coefficient matrix P with Pii=0, i=1, 2,…, N. (b) The 

corresponding grouping result (K = 5) of (a). (c) The grouped links (with green) in the fifth 

subnetwork, corresponding to the green bar in (b). [Color figure can be viewed at 

wileyonlinelibrary.com]
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Figure 4. 
Procedure for mild cognitive impairment (MCI) classification. In the training stage, we use 

the two-sample t-test to select significant features for two classes, i.e., mild cognitive 

impairment (MCI) and normal control (NC) classes. The selected features will be used to 

train the classifier. For the testing data, we use the same selected features as used in the 

training stage to predict the label of testing data as MCI or NC, using the trained classifier. 

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5. 
Comparison of brain functional networks of the same subject, reconstructed by five different 

methods, based on (a) Pearson's correlation (PC), (b) sparse representation (SR), (c) sparse 

group representation (SGR), (d) weighted sparse representation (WSR), and (e) weighted 

sparse group representation (WSGR). [Color figure can be viewed at 

wileyonlinelibrary.com]
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Figure 6. 
Comparison of classification results by five different methods using 7 performance metrics 

and also ROC curves. Results are based on the Pearson's correlation (PC), sparse 

representation (SR), sparse group representation (SGR), weighted sparse representation 

(WSR), and weighted sparse group representation (WSGR). Seven metrics include accuracy 

(ACC), sensitivity (SEN), specificity (SPE), area under curve (AUC), Youden's index (YI), 

F-Score, and balanced accuracy (BAC). [Color figure can be viewed at 

wileyonlinelibrary.com]
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Figure 7. 
Illustration of 47 consistently selected features (i.e., connections). The red arcs represent the 

features related to the default mode network. [Color figure can be viewed at 

wileyonlinelibrary. com]
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Figure 8. 
Classification Pattern. The thickness of each edge indicates its weight used in a linear SVM 

model for MCI classification. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 9. 
Demonstration of the discriminative regions used in classification. The regions shown in red, 

i.e., right inferior orbitofrontal cortex, right olfactory cortex, left superior medial frontal 

cortex, right anterior cingulate cortex, left inferior occipital gyrus, left fusiform gyrus, left 

inferior parietal lobule, right caudate, right putamen, right pallidum, and left inferior 

temporal gyrus, have at least three connections as selected features over all the consistently 

selected features. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 10. 
Classification accuracy based on the networks estimated by the proposed method with 

different regularized parametric values. The parameters are chosen between [2−5, 22]. The 

results are obtained by LOOCV on all subjects. [Color figure can be viewed at 

wileyonlinelibrary.com]
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Table I
Brain functional network construction models

Method Data-fitting term Regularization term

PC —

SR λ‖W‖1

WSR λ‖C ⊙ W‖1

SGR

WSGR

Note: The regularized parameters λ, λ1, λ2 are positive; Wii =0, ∀ i=1, 2,…, N.

PC, Pearson's correlation; SR, sparse representation; SGR, sparse group representation; WSR, weighted sparse representation; WSGR, weighted 
sparse group representation.
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Table II
Definitions of six statistical measurement indices

Measurement Definition

ACC

SEN

SPE

YI SEN + SPE − 1

F-Score

BAC

ACC, accuracy; SEN, sensitivity; SPE, specificity; YI, Youden's index; BAC, balanced accuracy.
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