3 research outputs found

    Learning Bijective Feature Maps for Linear ICA

    Get PDF
    Separating high-dimensional data like images into independent latent factors, i.e independent component analysis (ICA), remains an open research problem. As we show, existing probabilistic deep generative models (DGMs), which are tailor-made for image data, underperform on non-linear ICA tasks. To address this, we propose a DGM which combines bijective feature maps with a linear ICA model to learn interpretable latent structures for high-dimensional data. Given the complexities of jointly training such a hybrid model, we introduce novel theory that constrains linear ICA to lie close to the manifold of orthogonal rectangular matrices, the Stiefel manifold. By doing so we create models that converge quickly, are easy to train, and achieve better unsupervised latent factor discovery than flow-based models, linear ICA, and Variational Autoencoders on images.Comment: 8 page

    Generative AI in the Construction Industry: A State-of-the-art Analysis

    Full text link
    The construction industry is a vital sector of the global economy, but it faces many productivity challenges in various processes, such as design, planning, procurement, inspection, and maintenance. Generative artificial intelligence (AI), which can create novel and realistic data or content, such as text, image, video, or code, based on some input or prior knowledge, offers innovative and disruptive solutions to address these challenges. However, there is a gap in the literature on the current state, opportunities, and challenges of generative AI in the construction industry. This study aims to fill this gap by providing a state-of-the-art analysis of generative AI in construction, with three objectives: (1) to review and categorize the existing and emerging generative AI opportunities and challenges in the construction industry; (2) to propose a framework for construction firms to build customized generative AI solutions using their own data, comprising steps such as data collection, dataset curation, training custom large language model (LLM), model evaluation, and deployment; and (3) to demonstrate the framework via a case study of developing a generative model for querying contract documents. The results show that retrieval augmented generation (RAG) improves the baseline LLM by 5.2, 9.4, and 4.8% in terms of quality, relevance, and reproducibility. This study provides academics and construction professionals with a comprehensive analysis and practical framework to guide the adoption of generative AI techniques to enhance productivity, quality, safety, and sustainability across the construction industry.Comment: 74 pages, 11 figures, 20 table
    corecore