2 research outputs found

    Context Embedding Networks

    Get PDF
    Low dimensional embeddings that capture the main variations of interest in collections of data are important for many applications. One way to construct these embeddings is to acquire estimates of similarity from the crowd. However, similarity is a multi-dimensional concept that varies from individual to individual. Existing models for learning embeddings from the crowd typically make simplifying assumptions such as all individuals estimate similarity using the same criteria, the list of criteria is known in advance, or that the crowd workers are not influenced by the data that they see. To overcome these limitations we introduce Context Embedding Networks (CENs). In addition to learning interpretable embeddings from images, CENs also model worker biases for different attributes along with the visual context i.e. the visual attributes highlighted by a set of images. Experiments on two noisy crowd annotated datasets show that modeling both worker bias and visual context results in more interpretable embeddings compared to existing approaches.Comment: CVPR 2018 spotligh

    Learning Attributes from the Crowdsourced Relative Labels

    No full text
    Finding semantic attributes to describe related concepts is typically a hard problem. The commonly used attributes in most fields are designed by domain experts, which is expensive and time-consuming. In this paper we propose an efficient method to learn human comprehensible attributes with crowdsourcing. We first design an analogical interface to collect relative labels from the crowds. Then we propose a hierarchical Bayesian model, as well as an efficient initialization strategy, to aggregate labels and extract concise attributes. Our experimental results demonstrate promise on discovering diverse and convincing attributes, which significantly improve the performance of the challenging zero-shot learning tasks
    corecore