188,422 research outputs found

    Algorithms & Fiduciaries: Existing and Proposed Regulatory Approaches to Artificially Intelligent Financial Planners

    Get PDF
    Artificial intelligence is no longer solely in the realm of science fiction. Today, basic forms of machine learning algorithms are commonly used by a variety of companies. Also, advanced forms of machine learning are increasingly making their way into the consumer sphere and promise to optimize existing markets. For financial advising, machine learning algorithms promise to make advice available 24–7 and significantly reduce costs, thereby opening the market for financial advice to lower-income individuals. However, the use of machine learning algorithms also raises concerns. Among them, whether these machine learning algorithms can meet the existing fiduciary standard imposed on human financial advisers and how responsibility and liability should be partitioned when an autonomous algorithm falls short of the fiduciary standard and harms a client. After summarizing the applicable law regulating investment advisers and the current state of robo-advising, this Note evaluates whether robo-advisers can meet the fiduciary standard and proposes alternate liability schemes for dealing with increasingly sophisticated machine learning algorithms

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions

    Coherent control using adaptive learning algorithms

    Full text link
    We have constructed an automated learning apparatus to control quantum systems. By directing intense shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten
    • …
    corecore