17 research outputs found

    On the Audio-Visual Emotion Recognition using Convolutional Neural Networks and Extreme Learning Machine

    Get PDF
    The advances in artificial intelligence and machine learning concerning emotion recognition have been enormous and in previously inconceivable ways. Inspired by the promising evolution in human-computer interaction, this paper is based on developing a multimodal emotion recognition system. This research encompasses two modalities as input, namely speech and video. In the proposed model, the input video samples are subjected to image pre-processing and image frames are obtained. The signal is pre-processed and transformed into the frequency domain for the audio input. The aim is to obtain Mel-spectrogram, which is processed further as images. Convolutional neural networks are used for training and feature extraction for both audio and video with different configurations. The fusion of outputs from two CNNs is done using two extreme learning machines. For classification, the proposed system incorporates a support vector machine. The model is evaluated using three databases, namely eNTERFACE, RML, and SAVEE. For the eNTERFACE dataset, the accuracy obtained without and with augmentation was 87.2% and 94.91%, respectively. The RML dataset yielded an accuracy of 98.5%, and for the SAVEE dataset, the accuracy reached 97.77%. Results achieved from this research are an illustration of the fruitful exploration and effectiveness of the proposed system

    Meta Transfer Learning for Facial Emotion Recognition

    Full text link
    The use of deep learning techniques for automatic facial expression recognition has recently attracted great interest but developed models are still unable to generalize well due to the lack of large emotion datasets for deep learning. To overcome this problem, in this paper, we propose utilizing a novel transfer learning approach relying on PathNet and investigate how knowledge can be accumulated within a given dataset and how the knowledge captured from one emotion dataset can be transferred into another in order to improve the overall performance. To evaluate the robustness of our system, we have conducted various sets of experiments on two emotion datasets: SAVEE and eNTERFACE. The experimental results demonstrate that our proposed system leads to improvement in performance of emotion recognition and performs significantly better than the recent state-of-the-art schemes adopting fine-\ tuning/pre-trained approaches

    Deep Architectures and Ensembles for Semantic Video Classification

    Get PDF
    This work addresses the problem of accurate semantic labelling of short videos. To this end, a multitude of different deep nets, ranging from traditional recurrent neural networks (LSTM, GRU), temporal agnostic networks (FV,VLAD,BoW), fully connected neural networks mid-stage AV fusion and others. Additionally, we also propose a residual architecture-based DNN for video classification, with state-of-the art classification performance at significantly reduced complexity. Furthermore, we propose four new approaches to diversity-driven multi-net ensembling, one based on fast correlation measure and three incorporating a DNN-based combiner. We show that significant performance gains can be achieved by ensembling diverse nets and we investigate factors contributing to high diversity. Based on the extensive YouTube8M dataset, we provide an in-depth evaluation and analysis of their behaviour. We show that the performance of the ensemble is state-of-the-art achieving the highest accuracy on the YouTube-8M Kaggle test data. The performance of the ensemble of classifiers was also evaluated on the HMDB51 and UCF101 datasets, and show that the resulting method achieves comparable accuracy with state-of-the-art methods using similar input features
    corecore