13 research outputs found

    Visual Imitation Learning with Recurrent Siamese Networks

    Full text link
    It would be desirable for a reinforcement learning (RL) based agent to learn behaviour by merely watching a demonstration. However, defining rewards that facilitate this goal within the RL paradigm remains a challenge. Here we address this problem with Siamese networks, trained to compute distances between observed behaviours and the agent's behaviours. Given a desired motion such Siamese networks can be used to provide a reward signal to an RL agent via the distance between the desired motion and the agent's motion. We experiment with an RNN-based comparator model that can compute distances in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we have had also found that the inclusion of multi-task data and an additional image encoding loss helps enforce the temporal consistency. These two components appear to balance reward for matching a specific instance of behaviour versus that behaviour in general. Furthermore, we focus here on a particularly challenging form of this problem where only a single demonstration is provided for a given task -- the one-shot learning setting. We demonstrate our approach on humanoid agents in both 2D with 1010 degrees of freedom (DoF) and 3D with 3838 DoF.Comment: PrePrin

    Learning List-wise Representation in Reinforcement Learning for Ads Allocation with Multiple Auxiliary Tasks

    Full text link
    With the recent prevalence of reinforcement learning (RL), there have been tremendous interests in utilizing RL for ads allocation in recommendation platforms (e.g., e-commerce and news feed sites). For better performance, recent RL-based ads allocation agent makes decisions based on representations of list-wise item arrangement. This results in a high-dimensional state-action space, which makes it difficult to learn an efficient and generalizable list-wise representation. To address this problem, we propose a novel algorithm to learn a better representation by leveraging task-specific signals on Meituan food delivery platform. Specifically, we propose three different types of auxiliary tasks that are based on reconstruction, prediction, and contrastive learning respectively. We conduct extensive offline experiments on the effectiveness of these auxiliary tasks and test our method on real-world food delivery platform. The experimental results show that our method can learn better list-wise representations and achieve higher revenue for the platform.Comment: arXiv admin note: text overlap with arXiv:2109.04353, arXiv:2204.0037

    Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning

    Full text link
    Context, the embedding of previous collected trajectories, is a powerful construct for Meta-Reinforcement Learning (Meta-RL) algorithms. By conditioning on an effective context, Meta-RL policies can easily generalize to new tasks within a few adaptation steps. We argue that improving the quality of context involves answering two questions: 1. How to train a compact and sufficient encoder that can embed the task-specific information contained in prior trajectories? 2. How to collect informative trajectories of which the corresponding context reflects the specification of tasks? To this end, we propose a novel Meta-RL framework called CCM (Contrastive learning augmented Context-based Meta-RL). We first focus on the contrastive nature behind different tasks and leverage it to train a compact and sufficient context encoder. Further, we train a separate exploration policy and theoretically derive a new information-gain-based objective which aims to collect informative trajectories in a few steps. Empirically, we evaluate our approaches on common benchmarks as well as several complex sparse-reward environments. The experimental results show that CCM outperforms state-of-the-art algorithms by addressing previously mentioned problems respectively.Comment: Accepted to AAAI 202
    corecore