533 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms

    Achievable Secrecy Rates of an Energy Harvesting Device with a Finite Battery

    Get PDF
    In this paper, we investigate the achievable secrecy rates in an Energy Harvesting communication system composed of one transmitter and multiple receivers. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit or not and how much power should be used. We introduce the Optimal Secrecy Policy in several scenarios. We show that, if the receivers demand high secrecy rates, then it is not always possible to satisfy all their requests. Thus, we introduce a scheme that chooses which receivers should be discarded. Also, we study how the system is influenced by the Channel State Information and, in particular, how the knowledge of the eavesdropper's channel changes the achievable rates

    Practical LDPC coded modulation schemes for the fading broadcast channel with confidential messages

    Full text link
    The broadcast channel with confidential messages is a well studied scenario from the theoretical standpoint, but there is still lack of practical schemes able to achieve some fixed level of reliability and security over such a channel. In this paper, we consider a quasi-static fading channel in which both public and private messages must be sent from the transmitter to the receivers, and we aim at designing suitable coding and modulation schemes to achieve such a target. For this purpose, we adopt the error rate as a metric, by considering that reliability (security) is achieved when a sufficiently low (high) error rate is experienced at the receiving side. We show that some conditions exist on the system feasibility, and that some outage probability must be tolerated to cope with the fading nature of the channel. The proposed solution exploits low-density parity-check codes with unequal error protection, which are able to guarantee two different levels of protection against noise for the public and the private information, in conjunction with different modulation schemes for the public and the private message bits.Comment: 6 pages, 4 figures, to be presented at IEEE ICC'14 - Workshop on Wireless Physical Layer Securit
    corecore