4,896 research outputs found

    Neuromodulatory effects on early visual signal processing

    Get PDF
    Understanding how the brain processes information and generates simple to complex behavior constitutes one of the core objectives in systems neuroscience. However, when studying different neural circuits, their dynamics and interactions researchers often assume fixed connectivity, overlooking a crucial factor - the effect of neuromodulators. Neuromodulators can modulate circuit activity depending on several aspects, such as different brain states or sensory contexts. Therefore, considering the modulatory effects of neuromodulators on the functionality of neural circuits is an indispensable step towards a more complete picture of the brain’s ability to process information. Generally, this issue affects all neural systems; hence this thesis tries to address this with an experimental and computational approach to resolve neuromodulatory effects on cell type-level in a well-define system, the mouse retina. In the first study, we established and applied a machine-learning-based classification algorithm to identify individual functional retinal ganglion cell types, which enabled detailed cell type-resolved analyses. We applied the classifier to newly acquired data of light-evoked retinal ganglion cell responses and successfully identified their functional types. Here, the cell type-resolved analysis revealed that a particular principle of efficient coding applies to all types in a similar way. In a second study, we focused on the issue of inter-experimental variability that can occur during the process of pooling datasets. As a result, further downstream analyses may be complicated by the subtle variations between the individual datasets. To tackle this, we proposed a theoretical framework based on an adversarial autoencoder with the objective to remove inter-experimental variability from the pooled dataset, while preserving the underlying biological signal of interest. In the last study of this thesis, we investigated the functional effects of the neuromodulator nitric oxide on the retinal output signal. To this end, we used our previously developed retinal ganglion cell type classifier to unravel type-specific effects and established a paired recording protocol to account for type-specific time-dependent effects. We found that certain retinal ganglion cell types showed adaptational type-specific changes and that nitric oxide had a distinct modulation of a particular group of retinal ganglion cells. In summary, I first present several experimental and computational methods that allow to study functional neuromodulatory effects on the retinal output signal in a cell type-resolved manner and, second, use these tools to demonstrate their feasibility to study the neuromodulator nitric oxide

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Reliable Sensor Intelligence in Resource Constrained and Unreliable Environment

    Get PDF
    The objective of this research is to design a sensor intelligence that is reliable in a resource constrained, unreliable environment. There are various sources of variations and uncertainty involved in intelligent sensor system, so it is critical to build reliable sensor intelligence. Many prior works seek to design reliable sensor intelligence by developing robust and reliable task. This thesis suggests that along with improving task itself, task reliability quantification based early warning can further improve sensor intelligence. DNN based early warning generator quantifies task reliability based on spatiotemporal characteristics of input, and the early warning controls sensor parameters and avoids system failure. This thesis presents an early warning generator that predicts task failure due to sensor hardware induced input corruption and controls the sensor operation. Moreover, lightweight uncertainty estimator is presented to take account of DNN model uncertainty in task reliability quantification without prohibitive computation from stochastic DNN. Cross-layer uncertainty estimation is also discussed to consider the effect of PIM variations.Ph.D

    Architecture and Circuit Design Optimization for Compute-In-Memory

    Get PDF
    The objective of the proposed research is to optimize computing-in-memory (CIM) design for accelerating Deep Neural Network (DNN) algorithms. As compute peripheries such as analog-to-digital converter (ADC) introduce significant overhead in CIM inference design, the research first focuses on the circuit optimization for inference acceleration and proposes a resistive random access memory (RRAM) based ADC-free in-memory compute scheme. We comprehensively explore the trade-offs involving different types of ADCs and investigate a new ADC design especially suited for the CIM, which performs the analog shift-add for multiple weight significance bits, improving the throughput and energy efficiency under similar area constraints. Furthermore, we prototype an ADC-free CIM inference chip design with a fully-analog data processing manner between sub-arrays, which can significantly improve the hardware performance over the conventional CIM designs and achieve near-software classification accuracy on ImageNet and CIFAR-10/-100 dataset. Secondly, the research focuses on hardware support for CIM on-chip training. To maximize hardware reuse of CIM weight stationary dataflow, we propose the CIM training architectures with the transpose weight mapping strategy. The cell design and periphery circuitry are modified to efficiently support bi-directional compute. A novel solution of signed number multiplication is also proposed to handle the negative input in backpropagation. Finally, we propose an SRAM-based CIM training architecture and comprehensively explore the system-level hardware performance for DNN on-chip training based on silicon measurement results.Ph.D

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Resilient cooling of buildings: state of the art review

    Get PDF
    Name of the research project : IEA Annex 80 – Resilient Cooling of Buildings Publisher: Institute of Building Research & Innovation ZT GmbH, AustriaThis report summarizes an assessment of current State-of-the Art resilient cooling strategies and technologies. It is a result of a collaborative work conducted by participants members of IEA EBC Annex 80. This report consists of four chapters. In the first chapter are included relevant technologies and strategies that contribute to reducing heat loads to people and indoor environments. These technologies/strategies include Advanced window/glazing and shading technologies, Cool envelope materials, Evaporative Envelope Surfaces, Ventilated Envelope Surfaces and Heat Storage and Release. In the second chapter are assessed cooling strategies and technologies that are responsible for removing sensible heat in indoor environments: Ventilative cooling, Evaporative Cooling, Compression refrigeration, Desiccant cooling system, Ground source cooling, Night sky radiative cooling and High-temperature cooling systems. In the third chapter various typologies of cooling strategies and technologies are assessed inside the framework of enhancing personal comfort apart from space cooling. This group of strategies/technologies comprise of: Vertical-axis ceiling fans and horizontal-axis wall fans (such fixed fans differ from pure PCS in that they may be operated under imposed central control or under group or individual control), Small desktop-scale fans or stand fans, Furnitureintegrated fan jets, Devices combining fans with misting/evaporative cooling, Cooled chairs, with convective/conductive cooled heat absorbing surfaces, Cooled desktop surfaces, Workstation micro-air-conditioning units, some including phase change material storage, Radiantly cooled panels (these are currently less for PCS than for room heat load extraction), Conductive wearables, Fan-ventilated clothing ensembles, Variable clothing insulation: flexible dress codes and variable porosity fabrics. In the fourth chapter technologies and strategies pertinent to removing latent heat from indoor environments are assessed. This group includes Desiccant dehumidification, Refrigeration dehumidification, Ventilation dehumidification, and Thermos-electric dehumidification.Preprin
    • …
    corecore