20,137 research outputs found

    Leaf image retrieval using a shape based method

    Get PDF
    For content-based image retrieval, shape information is of great importance. This paper presents a shape descriptor of imaged leaf objects according to their boundaries for image retrieval. We take picture of leaves, exact the sketch from original images and produce a low dimensional feature vector to describe the shape. By comparing the similarity of the query image with those in database, a set of images with shape similarity are retrieved. The experiment shows that the method has high reliability and less time consuming

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Index Trees for Efficient Deformable Shape-based Retrieval

    Full text link
    An improved method for deformable shape-based image indexing and retrieval is described. A pre-computed index tree is used to improve the speed of our previously reported on-line model fitting method; simple shape features are used as keys in a pre-generated index tree of model instances. In addition, a coarse to fine indexing scheme is used at different levels of the tree to further improve speed while maintaining matching accuracy. Experimental results show that the speedup is significant, while accuracy of shape-based indexing is maintained. A method for shape population-based retrieval is also described. The method allows query formulation based on the population distributions of shapes in each image. Results of population-based image queries for a database of blood cell micrographs are shown.Office of Naval Research (Young Investigator Award, N00014-96-1-066); National Science Foundation (IIS-9624168, EIA-9623865

    Sabanci-Okan system at ImageClef 2011: plant identication task

    Get PDF
    We describe our participation in the plant identication task of ImageClef 2011. Our approach employs a variety of texture, shape as well as color descriptors. Due to the morphometric properties of plants, mathematical morphology has been advocated as the main methodology for texture characterization, supported by a multitude of contour-based shape and color features. We submitted a single run, where the focus has been almost exclusively on scan and scan-like images, due primarily to lack of time. Moreover, special care has been taken to obtain a fully automatic system, operating only on image data. While our photo results are low, we consider our submission successful, since besides being our rst attempt, our accuracy is the highest when considering the average of the scan and scan-like results, upon which we had concentrated our eorts

    Content based image retrieval for identification of plants using color, texture and shape features

    Get PDF
    In this thesis, an application of content-based image retrieval is proposed for plant identification, along with a preliminary implementation. The system takes a plant image as input and finds the matching plant from a plant image database and is intended to provide users a simple method to locate information about their plants. With a larger database, the system might be used by biologists, as an easy way to access to plant databases. Max-flow min-cut technique is used as the image segmentation method to separate the plant from the background of the image, so as to extract the general structure of the plant. Various color, texture and shape features extracted from the segmented plant region are used in matching images to the database. Color and texture analysis are based on commonly used features, namely color histograms in different color spaces, color co-occurrence matrices and Gabor texture maps. As for shape, we introduce some new descriptors to capture the outer contour characteristics of a plant. While color is very useful in many CBIR problems, in this particular problem, it introduces some challenges as well, since many plants just differ in the particular hue of the green color. As for shape and texture analysis, the difficulty stems from the fact that the plant is composed of many leaves, resulting in a complex and variable outer contour and texture. For texture analysis, we tried to capture leaf-level information using smaller shape regions or patches. Patch size is designed to contain a leaf structure approximately. Results show that for 54% of the queries, the correct plant image is retrieved among the top-15 results, using our database of 380 plants from 78 different plant types. Moreover, the tests are also performed on a clean database in which all the plant images have smooth shape descriptors and are among the 380 images. The test results obtained using this clean database increased the top-15 retrieval probability to 68%

    Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models

    Full text link
    We present a new deep learning architecture (called Kd-network) that is designed for 3D model recognition tasks and works with unstructured point clouds. The new architecture performs multiplicative transformations and share parameters of these transformations according to the subdivisions of the point clouds imposed onto them by Kd-trees. Unlike the currently dominant convolutional architectures that usually require rasterization on uniform two-dimensional or three-dimensional grids, Kd-networks do not rely on such grids in any way and therefore avoid poor scaling behaviour. In a series of experiments with popular shape recognition benchmarks, Kd-networks demonstrate competitive performance in a number of shape recognition tasks such as shape classification, shape retrieval and shape part segmentation.Comment: Spotlight at ICCV'1
    corecore