8 research outputs found

    Simultaneous Deployment and Tracking Multi-Robot Strategies with Connectivity Maintenance

    Get PDF
    Multi robot teams composed by ground and aerial vehicles have gained attention during the last years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper we propose two Lloyd-based tracking strategies to allow the ground robots (agents) follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a Minimum Spanning Tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments

    Simultaneous deployment and tracking multi-robot strategies with connectivity maintenance

    Get PDF
    Multi-robot teams composed of ground and aerial vehicles have gained attention during the last few years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper, we propose two Lloyd-based tracking strategies to allow the ground robots (agents) to follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a minimum spanning tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments

    Fast Convergence in Consensus Control of Leader-Follower Multi-Agent Systems

    Get PDF
    In this thesis, different distributed consensus control strategies are introduced for a multi-agent network with a leader-follower structure. The proposed strategies are based on the nearest neighbor rule, and are shown to reach consensus faster than conventional methods. Matrix equations are given to obtain equilibrium state of the network based on which the average-based control input is defined accordingly. Two network control rules are subsequently developed, where in one of them the control input is only applied to the leader, and in the other one it is applied to the leader and its neighbors. The results are then extended to the case of a time-varying network with switching topology and a relatively large number of agents. The convergence performance under the proposed strategies in the case of a time-invariant network with fixed topology is evaluated based on the location of the dominant eigenvalue of the closed-loop system. For the case of a time-varying network with switching topology, on the other hand, the state transition matrix of the system is investigated to analyze the stability of the proposed strategies. Finally, the input saturation in agents' dynamics is considered and the stability of the network under the proposed methods in the presence of saturation is studied
    corecore