4,756 research outputs found

    VLSI Architecture and Design

    Get PDF
    Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or less are tractable. Chip sizes are increasing slowly. These two developments result in considerably increased complexity in chip design. The physical characteristics of integrated circuit technology are also changing. The cost of communication will be dominating making new architectures and algorithms both feasible and desirable. A large number of processors on a single chip will be possible. The cost of communication will make designs enforcing locality superior to other types of designs. Scaling down feature sizes results in increase of the delay that wires introduce. The delay even of metal wires will become significant. Time tends to be a local property which will make the design of globally synchronous systems more difficult. Self-timed systems will eventually become a necessity. With the chip complexity measured in terms of logic devices increasing by more than an order of magnitude over the next few years the importance of efficient design methodologies and tools become crucial. Hierarchical and structured design are ways of dealing with the complexity of chip design. Structered design focuses on the information flow and enforces a high degree of regularity. Both hierarchical and structured design encourage the use of cell libraries. The geometry of the cells in such libraries should be parameterized so that for instance cells can adjust there size to neighboring cells and make the proper interconnection. Cells with this quality can be used as a basis for "Silicon Compilers"

    Unifying mesh- and tree-based programmable interconnect

    Get PDF
    We examine the traditional, symmetric, Manhattan mesh design for field-programmable gate-array (FPGA) routing along with tree-of-meshes (ToM) and mesh-of-trees (MoT) based designs. All three networks can provide general routing for limited bisection designs (Rent's rule with p<1) and allow locality exploitation. They differ in their detailed topology and use of hierarchy. We show that all three have the same asymptotic wiring requirements. We bound this tightly by providing constructive mappings between routes in one network and routes in another. For example, we show that a (c,p) MoT design can be mapped to a (2c,p) linear population ToM and introduce a corner turn scheme which will make it possible to perform the reverse mapping from any (c,p) linear population ToM to a (2c,p) MoT augmented with a particular set of corner turn switches. One consequence of this latter mapping is a multilayer layout strategy for N-node, linear population ToM designs that requires only /spl Theta/(N) two-dimensional area for any p when given sufficient wiring layers. We further show upper and lower bounds for global mesh routes based on recursive bisection width and show these are within a constant factor of each other and within a constant factor of MoT and ToM layout area. In the process we identify the parameters and characteristics which make the networks different, making it clear there is a unified design continuum in which these networks are simply particular regions

    Use of rod compactors for high voltage overhead power lines magnetic field mitigation

    Get PDF
    In the last decades, strengthening the high voltage transmission system through the installation of new overhead power lines has become critical, especially in highly developed areas. Present laws concerning the human exposure to electric and magnetic fields introduce constraints to be considered in both new line construction and existing systems. In the paper, a technique for passive magnetic field mitigation in areas close to overhead power lines is introduced, fully modelled and discussed through a parametric analysis. The investigated solution, which basically consists in approaching line conductors along the span making use of rod insulators, is applicable on both existing and under-design overhead lines as an alternative to other mitigating actions. Making use of a 3-dimensional representation, the procedure computes both positions of phase conductors and forces acting on insulators, towers, conductors and compactors, with the aim of evaluating the additional mechanical stress introduced by the compactors. Finally, a real case study is reported to demonstrate and quantify the benefits in terms of ground magnetic field reduction achievable by applying the proposed solution, in comparison to a traditional configuration. Furthermore, using compactors to passively reduce the magnetic field is simple to be applied, minimally invasive and quite inexpensive as regards to alternative mitigating actions

    Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts

    Get PDF
    The paper introduces some sorting networks and their simulation with P systems, in which each processor/membrane can hold more than one piece of data, and perform operations on them internally. Several data layouts are discussed in this context, and an optimal one is proposed, together with its implementation as a P system with dynamic communication graphs

    Methodology for standard cell compliance and detailed placement for triple patterning lithography

    Full text link
    As the feature size of semiconductor process further scales to sub-16nm technology node, triple patterning lithography (TPL) has been regarded one of the most promising lithography candidates. M1 and contact layers, which are usually deployed within standard cells, are most critical and complex parts for modern digital designs. Traditional design flow that ignores TPL in early stages may limit the potential to resolve all the TPL conflicts. In this paper, we propose a coherent framework, including standard cell compliance and detailed placement to enable TPL friendly design. Considering TPL constraints during early design stages, such as standard cell compliance, improves the layout decomposability. With the pre-coloring solutions of standard cells, we present a TPL aware detailed placement, where the layout decomposition and placement can be resolved simultaneously. Our experimental results show that, with negligible impact on critical path delay, our framework can resolve the conflicts much more easily, compared with the traditional physical design flow and followed layout decomposition

    Efficient Interconnection Schemes for VLSI and Parallel Computation

    Get PDF
    This thesis is primarily concerned with two problems of interconnecting components in VLSI technologies. In the first case, the goal is to construct efficient interconnection networks for general-purpose parallel computers. The second problem is a more specialized problem in the design of VLSI chips, namely multilayer channel routing. In addition, a final part of this thesis provides lower bounds on the area required for VLSI implementations of finite-state machines. This thesis shows that networks based on Leiserson\u27s fat-tree architecture are nearly as good as any network built in a comparable amount of physical space. It shows that these universal networks can efficiently simulate competing networks by means of an appropriate correspondence between network components and efficient algorithms for routing messages on the universal network. In particular, a universal network of area A can simulate competing networks with O(lg^3A) slowdown (in bit-times), using a very simple randomized routing algorithm and simple network components. Alternatively, a packet routing scheme of Leighton, Maggs, and Rao can be used in conjunction with more sophisticated switching components to achieve O(lg^2 A) slowdown. Several other important aspects of universality are also discussed. It is shown that universal networks can be constructed in area linear in the number of processors, so that there is no need to restrict the density of processors in competing networks. Also results are presented for comparisons between networks of different size or with processors of different sizes (as determined by the amount of attached memory). Of particular interest is the fact that a universal network built from sufficiently small processors can simulate (with the slowdown already quoted) any competing network of comparable size regardless of the size of processors in the competing network. In addition, many of the results given do not require the usual assumption of unit wire delay. Finally, though most of the discussion is in the two-dimensional world, the results are shown to apply in three dimensions by way of a simple demonstration of general results on graph layout in three dimensions. The second main problem considered in this thesis is channel routing when many layers of interconnect are available, a scenario that is becoming more and more meaningful as chip fabrication technologies advance. This thesis describes a system MulCh for multilayer channel routing which extends the Chameleon system developed at U. C. Berkeley. Like Chameleon, MulCh divides a multilayer problem into essentially independent subproblems of at most three layers, but unlike Chameleon, MulCh considers the possibility of using partitions comprised of a single layer instead of only partitions of two or three layers. Experimental results show that MulCh often performs better than Chameleon in terms of channel width, total net length, and number of vias. In addition to a description of MulCh as implemented, this thesis provides improved algorithms for subtasks performed by MulCh, thereby indicating potential improvements in the speed and performance of multilayer channel routing. In particular, a linear time algorithm is given for determining the minimum width required for a single-layer channel routing problem, and an algorithm is given for maintaining the density of a collection of nets in logarithmic time per net insertion. The last part of this thesis shows that straightforward techniques for implementing finite-state machines are optimal in the worst case. Specifically, for any s and k, there is a deterministic finite-state machine with s states and k symbols such that any layout algorithm requires (ks lg s) area to lay out its realization. For nondeterministic machines, there is an analogous lower bound of (ks^2) area
    • …
    corecore