7,540 research outputs found

    The arts of action

    Get PDF
    The theory and culture of the arts has largely focused on the arts of objects, and neglected the arts of action – the “process arts”. In the process arts, artists create artifacts to engender activity in their audience, for the sake of the audience’s aesthetic appreciation of their own activity. This includes appreciating their own deliberations, choices, reactions, and movements. The process arts include games, urban planning, improvised social dance, cooking, and social food rituals. In the traditional object arts, the central aesthetic properties occur in the artistic artifact itself. It is the painting that is beautiful; the novel that is dramatic. In the process arts, the aesthetic properties occur in the activity of the appreciator. It is the game player’s own decisions that are elegant, the rock climber’s own movement that is graceful, and the tango dancers’ rapport that is beautiful. The artifact’s role is to call forth and shape that activity, guiding it along aesthetic lines. I offer a theory of the process arts. Crucially, we must distinguish between the designed artifact and the prescribed focus of aesthetic appreciation. In the object arts, these are one and the same. The designed artifact is the painting, which is also the prescribed focus of appreciation. In the process arts, they are different. The designed artifact is the game, but the appreciator is prescribed to appreciate their own activity in playing the game. Next, I address the complex question of who the artist really is in a piece of process art — the designer or the active appreciator? Finally, I diagnose the lowly status of the process arts

    Survey of detection techniques, mathematical models and simulation software in pedestrian dynamics

    Get PDF
    The study of pedestrian dynamics has become in the latest years an increasing field of research. A relevant number of technicians have been looking for improving technologies able to detect walking people in various conditions. Several researchers have dedicated their works to model walking dynamics and general laws. Many studiers have developed interesting software to simulate pedestrian behavior in all sorts of situations and environments. Nevertheless, till nowadays, no research has been carried out to analyze all the three over-mentioned aspects. The remarked lack in literature of a complete research, pointing out the fundamental features of pedestrian detection techniques, pedestrian modelling and simulation and their tight relationships, motivates the draft of this paper. Aim of the paper is, first, to provide a schematic summary of each topic. Secondly, a more detailed description of the subjects is displayed, pointing out the advantages and disadvantages of each detection technology, the working logic of each model, outlining the inputs and the provided outputs, and the main features of the simulation software. Finally, the obtained results are summarized and discussed, in order to outline the correlation among the three explained themes

    Improving Efficiency and Generalization of Visual Recognition

    Get PDF
    Deep Neural Networks (DNNs) are heavy in terms of their number of parameters and computational cost. This leads to two major challenges: first, training and deployment of deep networks are expensive; second, without tremendous annotated training data, which are very costly to obtain, DNNs easily suffer over-fitting and have poor generalization. We propose approaches to these two challenges in the context of specific computer vision problems to improve their efficiency and generalization. First, we study network pruning using neuron importance score propagation. To reduce the significant redundancy in DNNs, we formulate network pruning as a binary integer optimization problem which minimizes the reconstruction errors on the final responses produced by the network, and derive a closed-form solution to it for pruning neurons in earlier layers. Based on our theoretical analysis, we propose the Neuron Importance Score Propagation (NISP) algorithm to propagate the importance scores of final responses to every neuron in the network, then prune neurons in the entire networks jointly. Second, we study visual relationship detection (VRD) with linguistic knowledge distillation. Since the semantic space of visual relationships is huge and training data is limited, especially for long-tail relationships that have few instances, detecting visual relationships from images is a challenging problem. To improve the predictive capability, especially generalization on unseen relationships, we utilize knowledge of linguistic statistics obtained from both training annotations (internal knowledge) and publicly available text, e.g., Wikipedia (external knowledge) to regularize visual model learning. Third, we study the role of context selection in object detection. We investigate the reasons why context in object detection has limited utility by isolating and evaluating the predictive power of different context cues under ideal conditions in which context provided by an oracle. Based on this study, we propose a region-based context re-scoring method with dynamic context selection to remove noise and emphasize informative context. Fourth, we study the efficient relevant motion event detection for large-scale home surveillance videos. To detect motion events of objects-of-interest from large scale home surveillance videos, traditional methods based on object detection and tracking are extremely slow and require expensive GPU devices. To dramatically speedup relevant motion event detection and improve its performance, we propose a novel network for relevant motion event detection, ReMotENet, which is a unified, end-to-end data-driven method using spatial-temporal attention-based 3D ConvNets to jointly model the appearance and motion of objects-of-interest in a video. In the last part, we address the recognition of agent-in-place actions, which are associated with agents who perform them and places where they occur, in the context of outdoor home surveillance. We introduce a representation of the geometry and topology of scene layouts so that a network can generalize from the layouts observed in the training set to unseen layouts in the test set. This Layout-Induced Video Representation (LIVR) abstracts away low-level appearance variance and encodes geometric and topological relationships of places in a specific scene layout. LIVR partitions the semantic features of a video clip into different places to force the network to learn place-based feature descriptions; to predict the confidence of each action, LIVR aggregates features from the place associated with an action and its adjacent places on the scene layout. We introduce the Agent-in-Place Action dataset to show that our method allows neural network models to generalize significantly better to unseen scenes

    Analyzing Structured Scenarios by Tracking People and Their Limbs

    Get PDF
    The analysis of human activities is a fundamental problem in computer vision. Though complex, interactions between people and their environment often exhibit a spatio-temporal structure that can be exploited during analysis. This structure can be leveraged to mitigate the effects of missing or noisy visual observations caused, for example, by sensor noise, inaccurate models, or occlusion. Trajectories of people and their hands and feet, often sufficient for recognition of human activities, lead to a natural qualitative spatio-temporal description of these interactions. This work introduces the following contributions to the task of human activity understanding: 1) a framework that efficiently detects and tracks multiple interacting people and their limbs, 2) an event recognition approach that integrates both logical and probabilistic reasoning in analyzing the spatio-temporal structure of multi-agent scenarios, and 3) an effective computational model of the visibility constraints imposed on humans as they navigate through their environment. The tracking framework mixes probabilistic models with deterministic constraints and uses AND/OR search and lazy evaluation to efficiently obtain the globally optimal solution in each frame. Our high-level reasoning framework efficiently and robustly interprets noisy visual observations to deduce the events comprising structured scenarios. This is accomplished by combining First-Order Logic, Allen's Interval Logic, and Markov Logic Networks with an event hypothesis generation process that reduces the size of the ground Markov network. When applied to outdoor one-on-one basketball videos, our framework tracks the players and, guided by the game rules, analyzes their interactions with each other and the ball, annotating the videos with the relevant basketball events that occurred. Finally, motivated by studies of spatial behavior, we use a set of features from visibility analysis to represent spatial context in the interpretation of human spatial activities. We demonstrate the effectiveness of our representation on trajectories generated by humans in a virtual environment

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform
    • …
    corecore