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Deep Neural Networks (DNNs) are “heavy” in terms of their number of parameters

and computational cost. This leads to two major challenges: first, training and deploy-

ment of deep networks are expensive; second, without tremendous annotated training

data, which are very costly to obtain, DNNs easily suffer over-fitting and have poor gen-

eralization. We propose approaches to these two challenges in the context of specific

computer vision problems to improve their efficiency and generalization.

First, we study network pruning using neuron importance score propagation. To

reduce the significant redundancy in DNNs, we formulate network pruning as a binary

integer optimization problem which minimizes the reconstruction errors on the final re-

sponses produced by the network, and derive a closed-form solution to it for pruning

neurons in earlier layers. Based on our theoretical analysis, we propose the Neuron Im-

portance Score Propagation (NISP) algorithm to propagate the importance scores of fi-

nal responses to every neuron in the network, then prune neurons in the entire networks

jointly.



Second, we study visual relationship detection (VRD) with linguistic knowledge

distillation. Since the semantic space of visual relationships is huge and training data

is limited, especially for long-tail relationships that have few instances, detecting visual

relationships from images is a challenging problem. To improve the predictive capabil-

ity, especially generalization on unseen relationships, we utilize knowledge of linguistic

statistics obtained from both training annotations (internal knowledge) and publicly avail-

able text, e.g., Wikipedia (external knowledge) to regularize visual model learning.

Third, we study the role of context selection in object detection. We investigate the

reasons why context in object detection has limited utility by isolating and evaluating the

predictive power of different context cues under ideal conditions in which context pro-

vided by an oracle. Based on this study, we propose a region-based context re-scoring

method with dynamic context selection to remove noise and emphasize informative con-

text.

Fourth, we study the efficient relevant motion event detection for large-scale home

surveillance videos. To detect motion events of objects-of-interest from large scale home

surveillance videos, traditional methods based on object detection and tracking are ex-

tremely slow and require expensive GPU devices. To dramatically speedup relevant mo-

tion event detection and improve its performance, we propose a novel network for relevant

motion event detection, ReMotENet, which is a unified, end-to-end data-driven method

using spatial-temporal attention-based 3D ConvNets to jointly model the appearance and

motion of objects-of-interest in a video.

In the last part, we address the recognition of agent-in-place actions, which are as-

sociated with agents who perform them and places where they occur, in the context of



outdoor home surveillance. We introduce a representation of the geometry and topology

of scene layouts so that a network can generalize from the layouts observed in the training

set to unseen layouts in the test set. This Layout-Induced Video Representation (LIVR)

abstracts away low-level appearance variance and encodes geometric and topological re-

lationships of places in a specific scene layout. LIVR partitions the semantic features of a

video clip into different places to force the network to learn place-based feature descrip-

tions; to predict the confidence of each action, LIVR aggregates features from the place

associated with an action and its adjacent places on the scene layout. We introduce the

Agent-in-Place Action dataset to show that our method allows neural network models to

generalize significantly better to unseen scenes.



IMPROVING EFFICIENCY AND
GENERALIZATION OF VISUAL RECOGNITION

by

Ruichi Yu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor David Jacobs
Professor Ramani Duraiswami
Professor Tom Goldstein



c© Copyright by
Ruichi Yu

2018





Acknowledgments

First, I would like to express my gratitude to my advisor, Professor Larry S. Davis.

As a research advisor, Larry is extraordinary. He provides me opportunities to explore a

diverse area of research directions which helps me to gradually understand the whole area

of computer vision and machine learning research. He always encourages me to think

and propose research ideas, and even if they are immature, Larry shows a lot of patience

to help me develop and polish them. He is very knowledgable in many research areas

and always inspires me and provides me relevant literatures. From working with him, I

not only broaden my horizon and improve my understanding of the field, but also learn

how to do creative and meticulous research. Besides being a research advisor, Larry also

influenced my a lot of other ways. He has a great sense of humor and it is always relaxed

and enjoyable to talk to him. It is very lucky of me to have Larry as my research advisor.

Meanwhile, I also would like to thank Vlad Morariu, who has been a great research

mentor during my graduate study. Vlad provides me with consistent help in discussing

and polishing ideas and writing papers. The most important thing I learnt from him is

that as a researcher, we should also “shoot for the moon”, which means that we should

start thinking of something impactful, even if it seems very difficult at the beginning.

Thanks are due to Professor Rama Chellappa, Professor Tom Goldstein, Professor Ramani

Duraiswami and Professor David Jacobs for agreeing to serve on my thesis committee

and for sparing their invaluable time reviewing the manuscript. I would like to thank

Hongcheng Wang and Jan Neumann from Comcast Applied AI research, and Chun-Fu

Chen, Jui-Hsin Lai, and Ching-Yung Lin in IBM T.J. Watson Research Center. A part

ii



of this thesis was conducted under the collaboration with them during my internship. I

would like to express my thankfulness to my colleagues Ang Li, Jingxiao Zheng, Mingfei

Gao and Xintong Han at the University of Maryland. All of them have provided me the

greatest research collaboration and support.

During my graduate study, I have had the opportunity to study in many great grad-

uate classes and I would like to thank all the teachers Marine Carpuat and Philip Resnik.

I am also fortunate to have had multiple brilliant research mentors from internships. I

would like to thank all of them for their invaluable comments and discussions which help

to frame the way I conduct and present research, including Mahmudul Hasan from Com-

cast Labs, Junhua Mao, Alper Ayvaci and Congcong Li from Waymo. I would like to

thank all of my other colleagues in the Computer Vision Lab and the CS department who

has enriched my graduate life in many ways.

I would also like to acknowledge help and support from the staff members of UMD

CS, UMIACS, Bluecrab cluster, Deepthought cluster and Vulcan cluster. I would like

to acknowledge financial support from the Office of NavalResearch (ONR) and Dean’s

Fellowship from University of Maryland CS department and Graduate Research Appre-

ciation Travel Award. I also acknowledge the University of Maryland supercomputing

resources for computation support. Finally, I owe my deepest thanks to my mother, father

and grandparents who have always stood by me and guided me through my career, and

have pulled me through against impossible odds at times, my heartfelt thanks to my wife,

Qinyi Xu, who gives me her unlimited support and encouragement, and makes my every-

day life much more colorful and joyful. It is impossible to remember all, and I apologize

to those I’ve inadvertently left out.

iii



Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

List of Abbreviations ix

1 Introduction 1
1.1 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Pruning Networks using Neuron Importance Score Propagation 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Neuron Importance Score Propagation (NISP) . . . . . . . . . . . . . . . 11
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Comparison with Random Pruning and Train-from-scratch Baselines . . . 18
2.6 Feature Selection v.s. Magnitude of Weights . . . . . . . . . . . . . . . . 20
2.7 NISP v.s. Layer-by-Layer Pruning . . . . . . . . . . . . . . . . . . . . . 21
2.8 Comparison with Existing Methods . . . . . . . . . . . . . . . . . . . . 23
2.9 Additional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Visual Relationship Detection with Internal and External Linguistic Knowledge
Distillation 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Linguistic Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . 33
3.4 Knowledge Distillation for Visual Relationship Detection . . . . . . . . . 34
3.5 Linguistic Knowledge Collection . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Semantic and Spatial Representations . . . . . . . . . . . . . . . . . . . 37
3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Evaluation on VRD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Evaluation on Visual Genome Dataset . . . . . . . . . . . . . . . . . . . 43

iv



3.10 Distillation with External Knowledge . . . . . . . . . . . . . . . . . . . 44
3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 The Role of Context Selection in Object Detection 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 The Role of Pure Context . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Region-based Context Re-scoring with Dynamic Context Selection . . . . 56
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Context Selection Model and Baseline Models . . . . . . . . . . . . . . . 61
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home
Surveillance Videos 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 ReMotENet using Spatial-temporal Attention-based C3D . . . . . . . . . 71
5.4 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 Baseline: Object Detection based Method . . . . . . . . . . . . . . . . . 77
5.8 ReMotENet Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.9 Comparing with the Object Detection based Method . . . . . . . . . . . . 83
5.10 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Layout-induced Video Representation for Recognizing Agent-in-Place Actions 88
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Layout-Induced Video Representation . . . . . . . . . . . . . . . . . . . 94

6.3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Semantic Feature Decomposition . . . . . . . . . . . . . . . . . 94
6.3.3 Topological Feature Aggregation (Topo-Agg) . . . . . . . . . . . 98

6.4 Agent-in-Place Action Dataset . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.2 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.3 Evaluation on the Proposed Method . . . . . . . . . . . . . . . . 104
6.5.4 Ablation Analysis on Unseen Scenes . . . . . . . . . . . . . . . 106

6.6 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusion 111

Bibliography 113

v



List of Tables

2.1 Compression Benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Predicate Detection on VRD Testing Set. Part 1 uses the VRD training
images; Part 2 uses the training images in VRD [1] and images of Visual
Genome (VG) [2] dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Phrase and Relationship Detection: Distillation of Linguistic Knowledge.
We use the same notations as in Table 3.1. . . . . . . . . . . . . . . . . . 48

3.3 Phrase and Relationship Detection: Distillation of Linguistic Knowledge
- Zero Shot. We use the same notations as in Table 3.1. . . . . . . . . . . 49

3.4 Predicate Detection on Visual Genome Dataset. Notations are the same
as in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Predicate Detection on VRD Testing Set: External Linguistic Knowledge. 50

4.1 Relative Accuracy Loss (RAL): T = Pillow . . . . . . . . . . . . . . . . 56
4.2 Relative Accuracy Loss (RAL): T = Bookshelf . . . . . . . . . . . . . . 56
4.3 Average Precision (AP) on SUN RGB-D Test Set. . . . . . . . . . . . . . 62
4.4 Average Precision (AP) on SUN RGB-D Test Set: with Oracle. . . . . . . 64
4.5 Selecting Ratio: T = Pillow . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Selecting Ratio: T = Bookshelf . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Network Structure of the ReMotENet using Spatial-temporal Attention-
based 3D ConvNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 F-score of relevant motion detection using different object detectors with
different FPS and resolution settings. . . . . . . . . . . . . . . . . . . . 79

5.3 The path from traditional 3D ConvNets to ReMotENet using Spatial-
temporal Attention Model. . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 The path from traditional 3D ConvNets to our methods. . . . . . . . . . . 104

vi



List of Figures

2.1 NISP: System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Neuron Importance Score Propagation . . . . . . . . . . . . . . . . . . . 12
2.3 Learning curves of random pruning and training from scratch baselines

and NISP using different CNNs on different datasets. The pruning ratio
of neurons and filters is 50%. Networks pruned by NISP (orange curves)
converge the fastest with the lowest accuracy loss. . . . . . . . . . . . . . 18

2.4 Comparison with layer-by-layer (LbL) and magnitude based (Mag) prun-
ing baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Weighted Average Reconstruction Error (WARE) on the final responses
without fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Evaluations for different pruning ratios. . . . . . . . . . . . . . . . . . . 25

3.1 Linguistic Knowledge Distillation Framework. . . . . . . . . . . . . . . 30
3.2 Visualization of predicate detection results. . . . . . . . . . . . . . . . . 40
3.3 Performance with varying sizes of training examples. . . . . . . . . . . . 45

4.1 Context Selection with Noisy Detection. . . . . . . . . . . . . . . . . . . 53
4.2 mAP v.s. Precision Threshold. . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Visualization of For-Against Context Selection. . . . . . . . . . . . . . . 65

5.1 Comparison between the traditional object detection based method and
ReMotENet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 ReMotENet for Relevant Motion Event Detection. . . . . . . . . . . . . . 70
5.3 Predicted Attention Mask of “FD-D-STA-NT” Method. . . . . . . . . . . 81
5.4 Comparing with baselines. . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Visualization of results from the detection based method and ReMotENet. 85

6.1 Example agent-in-place actions and segmentation maps. Different colors
represent different places. We zoom in to the agents performing the ac-
tions for clarity. An agent-in-place action is represented as ¡agent, action,
place¿. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Framework of LIVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 (a) illustrates distance-based place discretization. (b) illustrates the moti-

vation behind topological feature aggregation. . . . . . . . . . . . . . . 91
6.4 Layout-induced Video Representation Network. . . . . . . . . . . . . . 95
6.5 The process of distance-based place discretization. . . . . . . . . . . . . 98

vii



6.6 Topological feature aggregation which utilizes the connectivities between
different places in a scene to guide the connections between the extracted
place-based feature descriptions and the prediction labels. . . . . . . . . 99

6.7 Dataset Statistics on observed and unseen scenes. . . . . . . . . . . . . . 101
6.8 Per-category average precision of the baseline 3 and our methods on un-

seen scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Qualitative examples: The predicted confidences of groundtruth actions

using different methods. We use 3 frames to visualize a motion and or-
ange ellipses to highlight moving agents. . . . . . . . . . . . . . . . . . . 107

6.10 Ablation Study of LIVR. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.11 Process of Automatically Generating Segmentation Maps. . . . . . . . . 110

viii



List of Abbreviations

SVM Support Vector Machine
PCA Principal Component Analysis
SIFT Scale Invariant Feature Transform
CRF Conditional Random Field
NLP Natural Language Processing
IOU Intersection Over Union
CNN Convolutional Neural Network
DNN Deep Neural Network
GT Ground Truth
RCNN Region-based Convolution Neural Network
DPM Deformable Part-based Model
RNN Recurrent Neural Network
NLL Negative Log Likelihood
NISP Neuron Importance Score Propagation
FRL Final Response Layer
VRD Visual Relationship Detection
VG Visual Genome
ReMotENet Relevant Motion Event Network
mAP mean Average Precision
LIVR Layout-Induced Video Representation
RAL Relative Accuracy Loss
LK Linguistic Knowledge
SF Spatial Feature
FUB For Upper Bound
AUB Against Upper Bound
CS Context Selection
FPS Frame Per Second
PR Precision Recall

ix



Chapter 1: Introduction

1.1 Proposed Work

Deep Neural Networks (DNNs) are “heavy” in terms of their number of parameters

and computational cost. This leads to two major challenges: first, training and deploy-

ment of deep networks are expensive; second, without tremendous annotated training

data, which are very costly to obtain, DNNs easily suffer over-fitting and have poor gen-

eralization. We propose approaches to these two challenges in the context of specific

computer vision problems to improve their efficiency and generalization.

In the first work, we propose Neuron Importance Score Propagation (NISP) al-

gorithm to guide the pruning of a deep neuron network to improve its efficiency at de-

ployment. To reduce the significant redundancy in deep Convolutional Neural Networks

(CNNs), most existing methods prune neurons by only considering statistics of an individ-

ual layer or two consecutive layers (e.g., prune one layer to minimize the reconstruction

error of the next layer), ignoring the effect of error propagation in deep networks. In con-

trast, we argue that it is essential to prune neurons in the entire neuron network jointly

based on a unified goal: minimizing the reconstruction error of important responses in the

“final response layer” (FRL), which is the second-to-last layer before classification, for

a pruned network to retrain its predictive power. Specifically, we apply feature ranking

1



techniques to measure the importance of each neuron in the FRL, and formulate network

pruning as a binary integer optimization problem and derive a closed-form solution to

it for pruning neurons in earlier layers. Based on our theoretical analysis, we propose

the Neuron Importance Score Propagation (NISP) algorithm to propagate the importance

scores of final responses to every neuron in the network. The CNN is pruned by removing

neurons with least importance, and then fine-tuned to retain its predictive power. NISP

is evaluated on several datasets with multiple CNN models and demonstrated to achieve

significant acceleration and compression with negligible accuracy loss.

In the second work, we address the problem of poor generalization capability of vi-

sual relationship detection task by utilizing external knowledge to regularize the learning

process of a deep network. Understanding the visual relationship between two objects

involves identifying the subject, the object, and a predicate relating them. We leverage

the strong correlations between the predicate and the 〈subj, obj〉 pair (both semantically

and spatially) to predict predicates conditioned on the subjects and the objects. Modeling

the three entities jointly more accurately reflects their relationships compared to model-

ing them independently, but it complicates learning since the semantic space of visual

relationships is huge and training data is limited, especially for long-tail relationships

that have few instances. To overcome this, we use knowledge of linguistic statistics to

regularize visual model learning. We obtain linguistic knowledge by mining from both

training annotations (internal knowledge) and publicly available text, e.g., Wikipedia (ex-

ternal knowledge), computing the conditional probability distribution of a predicate given

a 〈subj, obj〉 pair. As we train the visual model, we distill this knowledge into the deep

model to achieve better generalization. Our experimental results on the Visual Relation-
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ship Detection (VRD) and Visual Genome datasets suggest that with this linguistic knowl-

edge distillation, our model outperforms the state-of-the-art methods significantly, espe-

cially when predicting unseen relationships (e.g., recall improved from 8.45% to 19.17%

on VRD zero-shot testing set).

In the third work, we investigate the reasons why context in object detection has

limited utility by isolating and evaluating the predictive power of different context cues

under ideal conditions in which context provided by an oracle. Based on this study, we

propose a region-based context re-scoring method with dynamic context selection to re-

move noise and emphasize informative context. We introduce latent indicator variables

to select (or ignore) potential contextual regions, and learn the selection strategy with

latent-SVM. We conduct experiments to evaluate the performance of the proposed con-

text selection method on the SUN RGB-D dataset. The method achieves a significant

improvement in terms of mean average precision (mAP), compared with both appearance

based detectors and a conventional context model without the selection scheme.

In the fourth work, we address the problem of detecting relevant motion caused by

objects of interest (e.g., person and vehicles) in large scale home surveillance videos. The

traditional method usually consists of two separate steps, i.e., detecting moving objects

with background subtraction running on the camera, and filtering out nuisance motion

events with deep learning based object detection and tracking running on cloud. The

method is extremely slow, and does not fully leverage the spatial-temporal redundancies

with a pre-trained off-the-shelf object detector. To dramatically speedup relevant motion

event detection and improve its performance, we propose a novel network for relevant

motion event detection, ReMotENet, which is a unified, end-to-end data-driven method

3



using spatial-temporal attention-based 3D ConvNets to jointly model the appearance and

motion of objects-of-interest in a video. ReMotENet parses an entire video clip in one

forward pass of a neural network to achieve significant speedup, which exploits the prop-

erties of home surveillance videos, and enhances 3D ConvNets with a spatial-temporal

attention model and frame differencing to encourage the network to focus on the relevant

moving objects. Experiments demonstrate that our method can achieve comparable or

event better performance than the object detection based method but with three to four

orders of magnitude speedup (up to 20k×) on GPU devices. Our network is efficient,

compact and light-weight. It can detect relevant motion on a 15s surveillance video clip

within 4-8 milliseconds on a GPU and a fraction of second (0.17-0.39s) on a CPU with a

model size of less than 1MB.

In the end, we address the recognition of agent-in-place actions, which are asso-

ciated with agents who perform them and places where they occur, in the context of

outdoor home surveillance. We introduce a representation of the geometry and topology

of scene layouts so that a network can generalize from the layouts observed in the training

set to unseen layouts in the test set. This Layout-Induced Video Representation (LIVR)

abstracts away low-level appearance variance and encodes geometric and topological re-

lationships of places in a specific scene layout. LIVR partitions the semantic features of a

video clip into different places to force the network to learn place-based feature descrip-

tions; to predict the confidence of each action, LIVR aggregates features from the place

associated with an action and its adjacent places on the scene layout. We introduce the

Agent-in-Place Action dataset to show that our method allows neural network models to

generalize significantly better to unseen scenes.
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1.2 Previous publication

Most of the materials in this thesis has been published at top-tier venues on com-

puter vision, and some of them are under review. The network pruning method using

importance score propagation was published in IEEE Conference on Computer Vision

and Pattern Recognition in 2018 [3]. The visual relationship detection using linguis-

tic knowledge distillation was published in International Conference on Computer Vi-

sion in 2017 [4]. The efficient relevant motion detection using spatial temporal attention

model was published in IEEE Winter Conference on Applications of Computer Vision in

2018 [5]. The work for exploring the role of context in object detection was published

in British Machine Vision Conference in 2016 [6]. The work of agent-in-place action

recognition is under review [7]. Other publications during my graduate study includes

generating holistic 3D scene abstractions for text-based image retrieval [8] (IEEE Confer-

ence on Computer Vision and Pattern Recognition 2017), dynamic zoom-in network for

fast object detection in large images [9] (IEEE Conference on Computer Vision and Pat-

tern Recognition 2018), VITON: an image-based virtual try-on network [10] (IEEE Con-

ference on Computer Vision and Pattern Recognition 2018) and C-WSL: count-guided

weakly supervised localization [11] (European Conference on Computer Vision ECCV).

1.3 Organization

The thesis is organized as follows. Chapter 2 introduces the network pruning

method using importance score propagation. Chapter 3 introduces the visual relation-

5



ship detection using linguistic knowledge distillation. Chapter4 introduces the role of

context in object detection. Chapter 5 introduces the efficient relevant motion detection

using spatial temporal attention. Chapter4 introduces the agent-in-place action recogni-

tion using layout-induced video representation. The thesis is then concluded in Chapter

7.
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Chapter 2: Pruning Networks using Neuron Importance Score Propaga-

tion

2.1 Introduction

CNNs require a large number of parameters and high computational cost in both

training and testing phases. Recent studies have investigated the significant redundancy

in deep networks [12] and reduced the number of neurons and filters [13–16] by prun-

ing the unimportant ones. However, most current approaches that prune neurons and

filters consider only the statistics of one layer (e.g., prune neurons with small magnitude

of weights [14, 15]), or two consecutive layers [16] to determine the “importance” of a

neuron. These methods prune the “least important” neurons layer-by-layer either inde-

pendently [14] or greedily [15, 16], without considering all neurons in different layers

jointly.

One problem with such methods is that neurons deemed unimportant in an early

layer can, in fact, contribute significantly to responses of important neurons in later lay-

ers. Our experiments (see Sec.2.7) reveal that greedy layer-by-layer pruning leads to

significant reconstruction error propagation, especially in deep networks, which indicates

the need for a global measurement of neuron importance across different layers of a CNN.
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To address this problem, we argue that it is essential for a pruned model to retain the

most important responses of the second-to-last layer before classification (“final response

layer” (FRL)) to retrain its predictive power, since those responses are the direct inputs of

the classification task (which is also suggested by feature selection methods, e.g., [17]).

We define the importance of neurons in early layers based on a unified goal: minimizing

the reconstruction errors of the responses produced in FRL. We first measure the im-

portance of responses in the FRL by treating them as features and applying some feature

ranking techniques (e.g., [17]), then propagate the importance of neurons backwards from

the FRL to earlier layers. We prune only nodes which have low propagated importance

(i.e., those whose removal does not result in large propagated error). From a theoretical

perspective, we formulate the network pruning problem as a binary integer programming

objective that minimizes the weighted `1 distance (proportional to the importance scores)

between the original final response and the one produced by a pruned network. We obtain

a closed-form solution to a relaxed version of this objective to infer the importance score

of every neuron in the network. Based on this solution, we derive the Neuron Importance

Score Propagation (NISP) algorithm, which computes all importance scores recursively,

using only one feature ranking of the final response layer and one backward pass through

the network as illustrated in Fig. 2.1.

The network is then pruned based on the inferred neuron importance scores and

fine-tuned to retain its predictive capability. We treat the pruning ratio per layer as a pre-

defined hyper-parameter, which can be determined based on different needs of specific

applications (e.g., FLOPs, memory and accuracy constraints). The pruning algorithm is

generic, since feature ranking can be applied to any layer of interest and the importance
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Figure 2.1: NISP: System Overview.

scores can still be propagated. In addition, NISP is not hardware specific. Given a pre-

trained model, NISP outputs a smaller network of the same type, which can be deployed

on the hardware devices designed for the original model.

We evaluate our approach on MNIST [18], CIFAR10 [19] and ImageNet [20] using

multiple standard CNN architectures such as LeNet [18], AlexNet [21], GoogLeNet [22]

and ResNet [23]. Our experiments show that CNNs pruned by our approach outperform

those with the same structures but which are either trained from scratch or randomly

pruned. We demonstrate that our approach outperforms magnitude-based and layer-by-

layer pruning. A comparison of the theoretical reduction of FLOPs and number of param-

eters of different methods shows that our method achieves faster full-network acceleration

and compression with lower accuracy loss, e.g., our approach loses 1.43% accuracy on

Alexnet and reduces FLOPs by 67.85% while Figurnov et al. [24] loses more (2%) and

reduces FLOPs less (50%). With almost zero accuracy loss on ResNet-56, we achieve a

43.61% FLOP reduction, significantly higher than the 27.60% reduction by Li et al. [15].

Contribution We introduce a generic network pruning algorithm which formulates
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the pruning problem as a binary integer optimization and provide a closed-form solution

based on final response importance. We present NISP to efficiently propagate the im-

portance scores from final responses to all other neurons. Experiments demonstrate that

NISP leads to full-network acceleration and compression for all types of layers in a CNN

with small accuracy loss.

2.2 Our Approach

An overview of NISP is illustrated in Fig. 2.1. Given a trained CNN, we first apply

a feature ranking algorithm on this final response layer and obtain the importance score of

each neuron. Then, the proposed NISP algorithm propagates importance scores through-

out the network. Finally, the network is pruned based on the importance scores of neurons

and fine-tuned to recover its accuracy.

Feature Ranking on the Final Response Layer Our intuition is that the final responses

of a neural network should play key roles in full network pruning since they are the direct

inputs of the classification task. So, in the first step, we apply feature ranking on the final

responses.

It is worth noting that our method can work with any feature selection that scores

features w.r.t.their classification power. We employ the recently introduced filtering method

Inf-FS [17] because of its efficiency and effectiveness on CNN feature selection. Inf-FS

utilizes properties of the power series of matrices to efficiently compute the importance

of a feature with respect to all the other features, i.e., it is able to integrate the importance

of a feature over all paths in the affinity graph.
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2.3 Neuron Importance Score Propagation (NISP)

Our goal is to decide which intermediate neurons to delete, given the importance

scores of final responses, so that the predictive power of the network is maximally re-

tained. We formulate this problem as a binary integer programming (optimization) and

provide a closed-form approximate solution. Based on our theoretical analysis, we de-

velop the Neuron Importance Score Propagation algorithm to efficiently compute the

neuron importance for the whole network.

Problem Definition The goal of pruning is to remove neurons while minimizing ac-

curacy loss. Since model accuracy is dependent on the final responses, we define our

objective as minimizing the weighted distance between the original final responses and

the final responses after neurons are pruned of a specific layer. In following, we use bold

symbols to represent vectors and matrices.

Most neural networks can be represented as a nested function. Thus, we define a

network with depth n as a function F (n) = f (n) ◦ f (n−1) ◦ · · · ◦ f (1). The l-th layer f (l) is

represented using the following general form,

f (l)(x) = σ(l)(w(l)x+ b(l)), (2.1)

where σ(l) is an activation function and w(l),b(l) are weight and bias, and f(n) represents

the ”final response layer”. Networks with branch connections such as the skip connection

in ResNet can be transformed to this representation by padding weights and merging

layers.

We define the neuron importance score as a non-negative value w.r.t.a neuron, and
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Figure 2.2: Neuron Importance Score Propagation

use sl to represent the vector of neuron importance scores in the l-th layer. Suppose Nl

neurons are to be kept in the l-th layer after pruning; we define the neuron prune indicator

of the l-th layer as a binary vector s∗l , computed based on neuron importance scores sl such

that s∗l,i = 1 if and only if sl,i is among top Nl values in sl.

Objective Function The motivation of our objective is that the difference between the

responses produced by the original network and the one produced by the pruned network

should be minimized w.r.t. important neurons. Let F (n) be a neural network with n

layers. Suppose we have a dataset of M samples, and each is represented using x
(m)
0 .

For the m-th sample, we use x
(m)
l to represent the response of the l-th layer (which is the

input to the (l+1)-th layer). The final output of the network is x(m)
n and its corresponding

non-negative neuron importance is sn. We define

G(i,j) = f (j) ◦ f (j−1) ◦ · · · ◦ f (i) (2.2)

as a sub-network of F (n) starting from the i-th layer to the j-th layer. Our goal is to

compute for the l-th layer the neuron prune indicator s∗l so that the influence of pruning

12



the l-th layer on the important neurons of the final response is minimized. To accomplish

this, we define an optimization objective w.r.t. the l-th layer neuron prune indicator, i.e.,

argmin
s∗l

M∑
m=1

F(s∗l |x(m)
l , sn;G

(l+1,n)) , (2.3)

which is accumulated over all samples in the dataset. The objective function for a single

sample is defined as

F(s∗l |x, sn;F ) = 〈 sn, |F (x)− F (s∗l � x)| 〉 , (2.4)

where 〈·, ·〉 is dot product, � is element-wise product and | · | is element-wise absolute

value. The solution to Eq. 2.3 indicates which neurons should be pruned in an arbitrary

layer.

Solution The network pruning problem can be formulated as a binary integer program,

finding the optimal neuron prune indicator in Eq. 2.3. However, it is hard to obtain effi-

cient analytical solutions by directly optimizing Eq. 2.3. So we derive an upper bound on

this objective, and show that a sub-optimal solution can be obtained by minimizing the

upper bound. Interestingly, we find a feasible and efficient formulation for the importance

scores of all neurons based on this sub-optimal solution.

Recall that the k-th layer is defined as f (k)(x) = σ(k)(w(k)x + b(k)). We assume

the activation function σ(k) is Lipschitz continuous since it is generally true for most

of the commonly used activations in neural networks such as Identity, ReLU, sigmoid,

tanh, PReLU, etc. Then we know for any x,y, there exists a constant C(k)
σ such that

|σ(k)(x)− σ(k)(y)| ≤ C
(k)
σ |x− y|. Then it is easy to see

|f (k)(x)− f (k)(y)| ≤ C(k)
σ |w(k)| · |x− y| , (2.5)
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where | · | is the element-wise absolute value. From Eq. 2.2, we see that G(i,j) = f (j) ◦

G(i,j−1). Therefore, we have,

|G(i,j)(x)−G(i,j)(y)|

≤ C(j)
σ |w(j)||G(i,j−1)(x)−G(i,j−1)(y)| . (2.6)

Applying Eq. 2.5 and Eq. 2.6 repeatedly, we have, ∀i ≤ j ≤ n,

|G(i,n)(x)−G(i,n)(y)| ≤ C
(i,n)
Σ W(i,n)|x− y|, (2.7)

where W(i,j) = |w(j)||w(j−1)| · · · |w(i)|, and C
(i,j)
Σ =

∏j
k=iC

(k)
σ . Substituting x =

x
(m)
l ,y = s∗l � x

(m)
l , i = l + 1 into Eq. 2.7, we have

|G(l+1,n)(x
(m)
l )−G(l+1,n)(s∗l � x

(m)
l )|

≤ C
(l+1,n)
Σ W(l+1,n)|x(m)

l − s∗l � x
(m)
l | . (2.8)

Since sn is a non-negative vector,

F(s∗l |x(m)
l , sn;G

(l+1,n))

= 〈sn, |G(l+1,n)(x
(m)
l )−G(l+1,n)(s∗l � x

(m)
l )|〉 (2.9)

≤ 〈sn, C(l+1,n)
Σ W(l+1,n)|x(m)

l − s∗l � x
(m)
l |〉 (2.10)

= C
(l+1,n)
Σ 〈W(l+1,n)ᵀsn, (1− s∗l )� |x(m)

l |〉 . (2.11)

Let us define rl = W(l+1,n)ᵀsn; then

∑M
m=1F(s∗l |x

(m)
l , sn;G

(l+1,n))

≤ C
(l+1,n)
Σ

∑M
m=1〈rl, (1− s∗l )� |x(m)

l |〉 (2.12)

≤ C
(l+1,n)
Σ

∑M
m=1

∑
i rl,i(1− s∗l,i)|x

(m)
l,i | (2.13)

= C
(l+1,n)
Σ

∑
i rl,i(1− s∗l,i)

∑M
m=1 |x

(m)
l,i | . (2.14)
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Since |x(m)
l,i | is bounded, there must exist a constant Cx such that

∑M
m=1 |x

(m)
l,i | ≤ Cx,∀i.

Thus, we have

M∑
m=1

F(s∗l |x(m)
l , sn;F

(l+1)) ≤ C
∑
i

rl,i(1− s∗l,i), (2.15)

where C = C
(l+1,n)
Σ Cx is a constant factor.

Eq. 2.15 reveals an upper-bound of our objective in Eq. 2.3. Thus, we minimize

this upper-bound, i.e.,

argmin
s∗l

∑
i

rl,i(1− s∗l,i)⇔ argmax
s∗l

∑
i

s∗l,irl,i . (2.16)

The optimal solution to Eq.2.16 is sub-optimal with respect to the original objective in

Eq. 2.3, however it still captures the importance of neurons. It is easy to see that if we keep

Nx neurons in the l-th layer after pruning, then the solution to Eq. 2.16 is that s∗l,i = 1 if

and only if rl,i is among the highest Nx values in rl. According to the definition of neuron

prune indicator in Sec. 2.3, rl = W(l+1,n)ᵀsn is a feasible solution to the importance

scores of the l-th layer response. This conclusion can be applied to every layer in the

network. Based on this result, we define the neuron importance of a network as follows.

Definition 2.3.1 (Neuron importance score). Given a neural network F (n) containing n

layers and the importance score s(n) of the last layer response, the importance score of

the k-th layer response can be computed as

sk = |w(k+1)|ᵀ|w(k+2)|ᵀ · · · |w(n)|ᵀsn, (2.17)

where w(i) is the weight matrix of the i-th layer.

An important property of neuron importance is that it can be computed recursively

(or propagated) along the network.
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Proposition 2.3.2 (Neuron importance score propagation). The importance score of the

kth layer response can be propagated from the importance score of the (k + 1)th layer by

sk = |w(k+1)|ᵀsk+1, (2.18)

where w(k+1) is the weight matrix of the (k + 1)th layer.

Algorithm We propose the Neuron Importance Score Propagation (NISP) algorithm

(shown in Fig. 2.2) based on Proposition 2.3.2. Initially, we have the importance score

of every neuron in the final response layer of the network. Definition 2.3.1 shows that

the importance score of every other layer in the network is directly correlated with the

importance of the final response. However, instead of computing the importance expen-

sively using Definition 2.3.1, we see from Eq. 2.18 that the importance score of a lower

layer can be propagated directly from the adjacent layer above it. An equivalent form of

Eq. 2.18 is

sk,j =
∑

i |w
(k+1)
i,j |sk+1,i, (2.19)

where sk,j is the importance score of the j-th neuron in the k-th layer response.

We conclude from Eq. 2.19 that the importance of a neuron is a weighted sum of

all the subsequent neurons that are directly connected to it. This conclusion also applies

to normalization, pooling and branch connections in the network (i.e., a layer is directly

connected with multiple layers). The NISP algorithm starts with the importance in FRL

and repeats the propagation (Eq. 2.19) to obtain the importance of all neurons in the

network with a single backward pass (Fig. 2.1).
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Pruning Networks Using NISP Given target pruning ratios for each layer, we propagate

the importance scores, compute the prune indicator of neurons based on their importance

scores and remove neurons with prune indicator value 0. The importance propagation and

layer pruning happens jointly in a single backward pass, and the importance of a pruned

neuron is not propagated to any further low-level layers. For fully connected layers,

we prune each individual neuron. For convolution layers, we prune a whole channel of

neurons together. The importance score of a channel is computed as the summation of the

importance scores of all neurons within this channel.

2.4 Experiments

We evaluate our approach on standard datasets with popular CNN networks. We

first compare to random pruning and training-from-scratch baselines to demonstrate the

effectiveness of our method. We then compare to two other baselines, magnitude-based

pruning and layer-by-layer pruning to highlight the contributions of feature ranking and

neuron importance score propagation, respectively. Finally, we benchmark the pruning

results and compare to existing methods such as [15, 24–26].

Experimental Setting We conduct experiments on three datasets, MNIST [18], CIFAR10

and ImageNet [20], for the image classification task. We evaluate using five commonly

used CNN architectures: LeNet [18], Cifar-net, AlexNet [21], GoogLeNet [22] and ResNet

[23].

All experiments and time benchmarks are obtained using Caffe [27]. The hyper-

parameter of Inf-FS is a loading coefficient α ∈ [0, 1], which controls the influence of

17



0.0 0.2 0.4 0.6 0.8 1.0
Iteration 1e4

0.00

0.05

0.10

0.15

0.20

A
c
c
u
ra

c
y
 L

o
s
s

NISPHalf

RandomHalf

ScratchHalf

(a) MNIST

0 1 2 3 4 5 6 7
Iteration 1e4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
c
c
u
ra

c
y
 L

o
s
s

NISPHalf

RandomHalf

ScratchHalf

(b) CIFAR10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Iteration 1e5

0.00

0.05

0.10

0.15

0.20

A
c
c
u
ra

c
y
 L

o
s
s

NISPC

NISPCF

RandomC

RandomCF

ScratchC

ScratchCF

(c) ImageNet: AlexNet

0.0 0.5 1.0 1.5 2.0
Iteration 1e6

0.1

0.2

0.3

0.4

A
c
c
u
ra

c
y
 L

o
s
s

NISPno1 ∗1

NISPHalf

Randomno1 ∗1

RandomHalf

Scratchno1 ∗1

ScratchHalf

(d) ImageNet: Googe-

LeNet

Figure 2.3: Learning curves of random pruning and training from scratch baselines and

NISP using different CNNs on different datasets. The pruning ratio of neurons and filters

is 50%. Networks pruned by NISP (orange curves) converge the fastest with the lowest

accuracy loss.

variance and correlation when measuring the importance. We conduct PCA accumulated

energy analysis as suggested in [28] to guide our choice of pruning ratios.

2.5 Comparison with Random Pruning and Train-from-scratch Baselines

We compare to two baselines: (1) randomly pruning the pre-trained CNN and then

fine-tuning, and (2) training a small CNN with the same number of neurons/filters per

layer as our pruned model from scratch. We use the same experimental settings for our

method and baselines except for the initial learning rate. For training from scratch, we

set the initial learning rate to the original one, while for fine-tuning tasks (both NISP and

random pruning), the initial learning rate is reduced by a factor of 10.

LeNet on MNIST: We prune half of the neurons in FC layers and half of the filters

in both convolution layers in Fig. 2.3(a). Our method is denoted as NISPHalf, while the
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baseline methods that prune randomly or train from scratch are denoted as RandomHalf and

ScratchHalf. Our method outperforms the baselines in three aspects. First, for fine-tuning

(after pruning), unlike the baselines, our method has very small accuracy loss at iteration

0; this implies that it retains the most important neurons, pruning only redundant or less

discriminative ones. Second, our method converges much faster than the baselines. Third,

our method has the smallest accuracy loss after fine-tuning. For LeNet on MNIST, our

method only decreases 0.02% top-1 accuracy with a pruning ratio of 50% as compared to

the pre-pruned network.

Cifar-net on CIFAR10: The learning curves are shown in Fig. 2.3(b). Similar

to the observations from the experiment for LeNet on MNIST, our method outperforms

the baselines in the same three aspects: the lowest initial loss of accuracy, the highest

convergence speed and the lowest accuracy loss after fine-tuning. Our method has less

than 1% top-1 accuracy loss with 50% pruning ratio for each layer.

AlexNet on ImageNet: To demonstrate that our method works on large and deep

CNNs, we replicate experiments on AlexNet with a pruning ratio of 50% for all convolu-

tion layers and FC layers (denoted as NISPCF when we prune both conv and FC layers).

Considering the importance of FC layers in AlexNet, we compare one more scenario in

which our approach only prunes half of the filters but without pruning neurons in FC lay-

ers (denoted as NISPC). We reduce the initial learning rate by a factor of 10, then fine-tune

90 epochs and report top-5 accuracy loss. Fig. 2.3(c) shows that for both cases (pruning

both convolution and FC layers and pruning only convolution layers), the advantages we

observed on MNIST and CIFAR10 still hold.

GoogLeNet on ImageNet: We denote the reduction layers in an inception mod-
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ule as “Reduce”, and the 1 × 1 convolution layer without reduction as “1×1”. We use

the quick solver from Caffe in training. We conduct experiments between our method

and the baselines for 3 pruning strategies: (Half ) pruning all convolution layers by half;

(noReduce) pruning every convolution layer except for the reduction layers in inception

modules by half; (no1x1 ) pruning every convolution layer by half except the 1× 1 layers

in inception modules. We show results for two of them in Fig. 2.3(d), and observe similar

patterns to the experiments on other CNN networks. For all GoogLeNet experiments, we

train/fine-tune for 60 epochs and report top-5 accuracy loss.

2.6 Feature Selection v.s. Magnitude of Weights

How to define neuron importance is an open problem. Besides using feature rank-

ing to measure neuron importance, other methods [14–16] measure neuron importance

by magnitude of weights. To study the effects of different criteria to determine neuron

importance, we conduct experiments by fixing other parts of NISP and only comparing

the pruning results with different measurements of importance: 1. using feature selection

method in [17] (NISP-FS) and 2. considering only magnitude of weights (NISP-Mag).

For the Magnitude-based pruning, the importance of a neuron in the final response layer

equals the absolute sum of all weights connecting the neuron with its previous layer. To

compare only the two metrics of importance, we rank the importance of neurons in the

final response layer based on the magnitude of their weight values, and propagate their

importance to the lower layers. Finally, we prune and fine-tune the model in the same

way as the NISP method.
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For the “NISP-Mag” baseline, we use both AlexNet and Cifar-net architectures.

The learning curves of those baselines are shown in Fig. 2.4. We observe that “NISP-

FS” yields much smaller accuracy loss with the same pruning ratio than “NISP-Mag”,

but “NISP-Mag” still outperforms the random pruning and train-from-scratch baselines,

which shows the effectiveness of NISP with different measurement of importance. In the

remainder of this paper, we employ the feature ranking method proposed in [17] in NISP.

2.7 NISP v.s. Layer-by-Layer Pruning

To demonstrate the advantage of the NISP’s importance propagation, we compare

with a pruning method that conducts feature ranking on every layer to measure the neuron

importance and prune the unimportant neurons of each layer independently. All other

settings are the same as NISP. We call this method “Layer-by-Layer” (LbL) pruning.

One challenge for the “LbL” baseline is that the computational cost of measuring

neuron importance on each layer is huge. So we choose a small CNN structure trained on

the CIFAR10 dataset. Fig. 2.4(b) shows that although the “LbL” method outperforms the

baselines, it performs much worse than NISP in terms of the final accuracy loss with the

same pruning ratio, which shows the need for measuring the neuron importance across

the entire network using NISP.

To further study the advantage of NISP over layer-by-layer pruning, we define the

Weighted Average Reconstruction Error (WARE) to measure the change of the important

neurons’ responses on the final response layer after pruning (without fine-tuning) as:

WARE =

∑M
m=1

∑N
i=1 si ·

|ŷi,m−yi,m|
|yi,m|

M ·N , (2.20)
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Figure 2.4: Comparison with layer-by-layer (LbL) and magnitude based (Mag) pruning

baselines.

where M and N are the number of samples and number of retained neurons in the final

response layer; si is the importance score; yi,m and ŷi,m is the response on the mth sample

of the ith neuron before/after pruning.

We design different Cifar-net-like CNNs with different numbers of Conv layers,

and apply NISP and LbL pruning with different pruning ratios. We report the WARE

on the retained neurons in the final response layer (“ip1” layer in Cifar-net-like CNNs)

in Fig. 2.5. We observe that: 1. As network depth increases, the WARE of the LbL-

pruned network dramatically increases, which indicates the error propagation problem of

layer-by-layer pruning, especially when the network is deep, and suggests the need for a

global pruning method such as NISP; 2. The WARE of the LbL method becomes much

larger when the pruning ratio is large, but is more stable when using NISP to prune a

network; 3. NISP methods always reduce WARE on the retained neurons compared to

LbL. The small reconstruction errors on the important neurons in the final response layer

obtained by NISP provides a better initialization for fine-tuning, which leads to much

lower accuracy loss of the pruned network.
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Figure 2.5: Weighted Average Reconstruction Error (WARE) on the final responses with-

out fine-tuning.

2.8 Comparison with Existing Methods

We compare our method with existing pruning methods on AlexNet, GoogLeNet

and ResNet, and show results in Table 2.1.

In Table 2.1, for AlexNet, the pruning ratio is 50%. NISP-A denotes pruning all

Conv layers; NISP-B denotes pruning all Conv layers except for Conv5; NISP-C denotes

pruning all Conv layers except for Conv5 and Conv4; NISP-D means pruning Conv2,

Conv3 and FC6 layers. For GoogLeNet, we use the similar the pruning ratios of the 3×3

layers in [25], and we prune 20% of the reduce layers. Our method is denoted as “NISP”.

To compare theoretical speedup, we report reduction in the number of multiplica-

tion and the number of parameters following [25] and [24], and denote them as [FLOPs↓%]

and [Params.↓%] in the table. Pruning a CNN is a trade-off between efficiency and accu-

racy. We compare different methods by fixing one metric and comparing the other.

On AlexNet, by achieving smaller accuracy loss (1.43% ours vs. 2.00% [24]),

our method NISP-A manages to reduce significantly more FLOPs (67.85%) than the one

1A negative value here indicates an improved model accuracy.
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in [24] (50%), denoted as “Perforate” in the table; compare to the method in [26] (de-

noted as “Learning”), our method NISP-C achieves much smaller accuracy loss (0.54%

ours vs. 1.20%) and prunes more FLOPs (53.70% ours vs. 48.19%). We manage to

achieve 0 accuracy loss and reduce over 40% FLOPs and 47.09% parameters (NISP-D).

On GoogLeNet, Our method achieves similar accuracy loss with larger FLOPs reduction

(58.34% vs. 51.50%) Using ResNet on Cifar10 dataset, with top-1 accuracy loss similar

to [15] (56-A, 56-B. 110-A and 110-B), our method reduces more FLOPs and parameters.

We also conduct our ResNet experiments on ImageNet [20]. We train a ResNet-34

and a ResNet-50 for 90 epochs. For both ResNet models, we prune 15% and 25% of

filters for each layer (denote as “NISP-X-A” and “NISP-X-B” (“X” indicates the ResNet

model) in Table 2.1), and obtain 27-44% FLOPs and parameter reduction with tiny top-1

accuracy loss, which shows superior performance when compared with the state-of-the-

art methods [15, 16].

2.9 Additional Analysis

Below, we provide case studies and ablation analysis to help understand the pro-

posed NISP pruning algorithm.

Similar Predictive Power of Networks Before/After Pruning. To check whether

the pruned network retains similar predictive power with the original network, we com-

pare the final 1000-category classification results of the original AlexNet and the pruned

one with fine-tuning using the ILSVRC2012 validation set. 85.9% of the top 1 predictions

of the two networks agree with each other, and 95.1% top 1 predictions of the pruned net-
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Figure 2.6: Evaluations for different pruning ratios.

work can be found in the top 5 predictions of the original network. The above experiments

show that the network pruned by NISP performs similarly with the original one.

Recursive pruning. One advantage of NISP is that it needs only a one-pass pruning

with one-time fine-tuning, which is very efficient and it reduces significant computational

cost. To study whether recursive pruning helps, we conduct a recursive pruning exper-

iment on AlexNet. The final goal of the pruning ratio is 50% for all layers. Instead

of direct pruning, we prune 25% of neurons prune twice using NISP. We observe that

the importance score ranking of neurons generated by this recursive method slightly dif-

fers from the ranking list produced by the proposed direct approach, e.g., among top 50%

most important neurons in both ranking lists, 84.27% neurons overlap. The final accuracy

change between direct pruning (76.38% top-5 accuracy) and recursive pruning (76.71%)

is also small. We conclude that a neuron’s importance score may change during recursive

pruning, but after fine-tuning with a small learning rate, the change becomes negligible.

Sensitivity of pruning ratios. The selection of per-layer pruning ratios given a

FLOPs budget is a challenging open problem with a large search space. Due to time
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limitation, we either choose a single pruning ratio for all layers or replicate the pruning

ratios of baseline methods (e.g., [25]), and NISP achieves smaller accuracy loss, which

shows the effectiveness of NISP. In practice, if time and GPU resources permit, one can

search the optimal hyper-parameters by trying different pruning ratio combinations on a

validation set.

To study the effect of different pruning ratios, we experimented on pruning only a

single layer or a type of layers by 50% and monitored the accuracy loss. We observed

that the sensitivities of pruning per layer are similar to each other for some networks (e.g.,

ResNet); some layers are more sensitive to a large pruning ratio (e.g., the Conv1 layer of

AlexNet and the “1x1” layers of GoogLeNet).

We also evaluate NISP with very large pruning ratios. We test on pruning ratios of

75% (denoted as Quarter in the figures) and 90% using LeNet (Fig. 2.6(a)) (denoted as

Tenth) for both Conv and FC layers. For AlexNet (Fig. 2.6(b)), we test on pruning ratios

of 75% (Quarter) for both convolution and FC layers, and we test two pruning strategies:

(1) prune 75% of neurons in FC layers and filters in Conv layers, denoted as FC; and (2)

only prune 75% of the convolution filters without pruning FC layers, denoted as C.

The above experiments show that NISP still outperforms all baselines significantly

with large pruning ratios, in terms of both convergence speed and final accuracy.

2.10 Conclusion

We proposed a generic framework for network compression and acceleration based

on identifying the importance levels of neurons. Neuron importance scores in the layer
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of interest (usually the last layer before classification) are obtained by feature ranking.

We formulated the network pruning problem as a binary integer program and obtained

a closed-form solution to a relaxed version of the formulation. We presented the Neu-

ron Importance Score Propagation algorithm that efficiently propagates the importance to

every neuron in the whole network. The network is pruned by removing less important

neurons and fine-tuned to retain its predicative capability. Experiments demonstrated that

our method effectively reduces CNN redundancy and achieves full-network acceleration

and compression.
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Model Accu.↓% FLOPs↓% Params.↓%

AlexNet NISP-A 1.43 67.85 33.77

on ImageNet Perforated [24] 2.00 50.00 -

NISP-B 0.97 62.69 1.96

Tucker [25] 1.70 62.55 -

NISP-C 0.54 53.70 2.91

Learning [26] 1.20 48.19 -

NISP-D 0.00 40.12 47.09

GoogLeNet NISP 0.21 58.34 33.76

on ImageNet Tucker [25] 0.24 51.50 31.88

ResNet NISP-56 0.03 43.61 42.60

on CIFAR10 56-A [15] -0.061 10.40 9.40

56-B [15] -0.02 27.60 13.70

NISP-110 0.18 43.78 43.25

110-A [15] 0.02 15.90 2.30

110-B [15] 0.23 38.60 32.40

ResNet NISP-34-A 0.28 27.32 27.14

on ImageNet NISP-34-B 0.92 43.76 43.68

Res34 [15] 1.06 24.20 -

NISP-50-A 0.21 27.31 27.12

NISP-50-B 0.89 44.01 43.82

Res50 [16] 0.84 36.79 33.67

Table 2.1: Compression Benchmark.
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Chapter 3: Visual Relationship Detection with Internal and External Lin-

guistic Knowledge Distillation

3.1 Introduction

Detecting visual relationships from images is a central problem in image under-

standing. Relationships are commonly defined as tuples consisting of a subject (subj),

predicate (pred) and object (obj) [29–31]. Visual relationships represent the visually ob-

servable interactions between subject and object 〈subj, obj〉 pairs, such as 〈person, ride, horse〉

[1].

Recently, Lu et al. [1] introduce the visual relationship dataset (VRD) to study

learning of a large number of visual relationships from images. Lu et al.predict the pred-

icates independently from the subjects and objects, and use the product of their scores to

predict relationships present in a given image using a linear model. The results in [1] sug-

gest that predicates cannot be predicted reliably with a linear model that uses only visual

cues, even when the ground truth categories and bounding boxes of the subject and object

are given ( [1] reports Recall@100 of only 7.11% for their visual prediction). Although

the visual input analyzed by the CNN in [1] includes the subject and object, predicates are

predicted without any knowledge about the object categories present in the image or their
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Figure 3.1: Linguistic Knowledge Distillation Framework.

relative locations. In contrast, we propose a probabilistic model to predict the predicate

name jointly with the subject and object names and their relative spatial arrangement:

P (R|I) = P (pred|Iunion, subj, obj)P (subj)P (obj). (3.1)

While our method models visual relationships more accurately than [1], our model’s

parameter space is also enlarged because of the large variety of relationship tuples. This

leads to the challenge of insufficient labeled image data. The straightforward—but very

costly—solution is to collect and annotate a larger image dataset that can be used to train

this model. Due to the long tail distribution of relationships, it is hard to collect enough

training images for all relationships. To make the best use of available training images,

we leverage linguistic knowledge (LK) to regularize the deep neural network. One way to

obtain linguistic knowledge is to compute the conditional probabilities P (pred|subj, obj)

from the training annotations.

However, the number of 〈subj, pred, obj〉 combinations is too large for each triplet

to be observed in a dataset of annotated images, so the internal statistics (e.g., statistics of
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the VRD dataset) only capture a small portion of the knowledge needed. To address this

long tail problem, we collect external linguistic knowledge (P (pred|subj, obj)) from pub-

lic text on the Internet (Wikipedia). This external knowledge consists of statistics about

the words that humans commonly use to describe the relationship between subject and

object pairs, and importantly, it includes pairs unseen in our training data. Although the

external knowledge is more general, it can be very noisy (e.g., due to errors in linguistic

parsing).

We make use of the internal and external knowledge in a teacher-student knowledge

distillation framework [32,33], shown in Figure 1, where the output of the standard vision

pipeline, called the student network, is augmented with the output of a model that uses the

linguistic knowledge to score solutions; their combination is called the teacher network.

The objective is formulated so that the student not only learns to predict the correct one-

hot ground truth labels but also to mimic the teacher’s soft belief between predicates.

Our main contribution is that we exploit the role of both visual and linguistic repre-

sentations in visual relationship detection and use internal and external linguistic knowl-

edge to regularize the learning process of an end-to-end deep neural network to signifi-

cantly enhance its predictive power and generalization. We evaluate our method on the

VRD [1] and Visual Genome (VG) [2] datasets. Our experiments using Visual Genome

show that while the improvements due to training set size are minimal, improvements due

to the use of LK are large, implying that with current dataset sizes, it is more fruitful to

incorporate other types knowledge (e.g., LK) than to increase the visual dataset size—this

is particularly promising because visual data is expensive to annotate and there exist many

readily available large scale sources of knowledge that have not yet been fully leveraged

31



for visual tasks.

3.2 Our Approach

A straightforward way to predict relationship predicates is to train a CNN on the

union of the two bounding boxes that contain the two objects of interest as the visual input,

fuse semantic features (that encode the object categories) and spatial features (that encode

the relative positions of the objects) with the CNN features (that encode the appearance

of the objects), and feed them into a fully connected (FC) layer to yield an end-to-end

prediction framework. However, the number of 〈subj, pred, obj〉 tuples is very large and

the parameter space of the end-to-end CNN would be huge. While the subject, predicate,

and object are not statistically independent, a CNN would require a massive amount of

data to discover the dependence structure while also learning the mapping from visual

features to semantic relationships. To avoid over-fitting and achieve better predictive

power without increasing the amount of visual training data, additional information is

needed to help regularize the training of the CNN.

Figure 3.1 summarizes our proposed model. Given an image, we extract three input

components: the cropped images of the union of the two detected objects (BB-Union);

the semantic object representations obtained from the object category confidence score

distributions obtained from the detector; and the spatial features (SF) obtained from pairs

of detected bounding boxes. We concatenate VGG features, semantic object vectors,

and the spatial feature vectors, then train another FC layer using the ground truth label

(GT) and the linguistic knowledge to predict the predicate. Unlike [1], which used the
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VGG features to train a linear model, our training is end-to-end without fixing the VGG-

net. Following [32, 33], we call the data-driven model the “student”, and the linguistic

knowledge regularized model the “teacher”.

3.3 Linguistic Knowledge Distillation

Preliminary: Incorporating Knowledge in DNNs The idea of incorporating additional

information in DNNs has been exploited recently [32–34]. We adapted Hu et al.’s teacher-

student framework [32, 33] to distill linguistic knowledge in a data-driven model. The

teacher network is constructed by optimizing the following criterion:

min
t∈T

KL(t(Y )||sφ(Y |X))− CEt[L(X, Y )], (3.2)

where t(Y ) and sφ(Y |X) are the prediction results of the teacher and student networks;

C is a balancing term; φ is the parameter set of the student network; L(X, Y ) is a general

constraint function that has high values to reward the predictions that meet the constraints

and penalize the others. KL measures the KL-divergence of teacher’s and student’s pre-

diction distributions. The closed-form solution of the optimization problem is:

t(Y ) ∝ s(Y |X)exp(CL(X, Y )) . (3.3)

The new objective which contains both ground truth labels and the teacher network is

defined as:

min
φ∈Φ

1

n

n∑
i=1

αl(si, yi) + (1− α)l(si, ti), (3.4)

where si and ti are the student’s and teacher’s predictions for sample i; yi is the ground

truth label for sample i; α is a balancing term between ground truth and the teacher
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network. l is the loss function. More details can be found in [32, 33].

3.4 Knowledge Distillation for Visual Relationship Detection

Linguistic knowledge is modeled by a conditional probability that encodes the

strong correlation between the pair of objects 〈subj, obj〉 and the predicate that humans

tend to use to describe the relationship between them:

L(X, Y ) = logP (pred|subj, obj), (3.5)

where X is the input data and Y is the output distribution of the student network. P (pred|subj, obj)

is the conditional probability of a predicate given a fixed 〈subj, obj〉 pair in the obtained

linguistic knowledge set.

By solving the optimization problem in Eq. 3.2, we construct a teacher network that

is close to the student network, but penalizes a predicted predicate that is unlikely given

the fixed 〈subj, obj〉 pairs. The teacher’s output can be viewed as a projection of the

student’s output in the solution space constrained by linguistic knowledge. For example,

when predicting the predicate between a “plate” and a “table”, given the subject (“plate”)

and the object (“table”), and the conditional probability P (pred|plate, table), the teacher

will penalize unlikely predicates, (e.g., “in”) and reward likely ones (e.g., “on”), helping

the network avoid portions of the parameter space that lead to poor solutions.

Given the ground truth label and the teacher network’s output distribution, we want

the student network to not only predict the correct predicate labels but also mimic the lin-

guistic knowledge regularized distributions. This is accomplished using a cross-entropy

loss (see Eq. 3.4).
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One advantage of this LK distillation framework is that it takes advantage of both

knowledge-based and data-driven systems. Distillation works as a regularizer to help train

the data-driven system. On the other hand, since we construct the teacher network based

on the student network, the knowledge regularized predictions (teacher’s output) will also

be improved during training as the student’s output improves. Rather than using linguistic

knowledge as a post-processing step, our framework enables the data-driven model to

absorb the linguistic knowledge together with the ground truth labels, allowing the deep

network to learn a better visual model during training rather than only having its output

modified in a post-processing step. This leads to a data-driven model (the student) that

generalizes better, especially in the zero-shot scenario where we lack linguistic knowledge

about a 〈subj, obj〉 pair. While [32–34] used either the student or the teacher as the final

output, our experiments show that both the student and teacher in our framework have

their own advantages, so we combine them to achieve the best predictive power (see

section 3.7).

3.5 Linguistic Knowledge Collection

To obtain the linguistic knowledge P (pred|subj, obj), a straightforward method is

to count the statistics of the training annotations, which reflect the knowledge used by an

annotator in choosing an appropriate predicate to describe a visual relationship. Due to

the long tail distribution of relationships, a large number of combinations never occur in

the training data; however, it is not reasonable to assume the probability of unseen rela-

tionships is 0. To tackle this problem, one can apply additive smoothing to assign a very
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small number to all 0’s [35]; however, the smoothed unseen conditional probabilities are

uniform, which is still confusing at LK distillation time. To collect more useful linguistic

knowledge of the long-tail unseen relationships, we exploit text data from the Internet.

One challenge of collecting linguistic knowledge online is that the probability of

finding text data that specifically describes objects and their relationships is low. This

requires us to obtain the knowledge from a huge corpus that covers a very large domain

of knowledge. Thus we choose the Wikipedia 2014-06-16 dump containing around 4

billion words and 450 million sentences that have been parsed to text by [36] to extract

knowledge.

We utilize the scene graph parser proposed in [37] to parse sentences into sets

of 〈subj, pred, obj〉 triplets, and we compute the conditional probabilities of predicates

based on these triplets. However, due to the possible mistakes of the parser, especially

on text from a much wider domain than the visual relationship detection task, the lin-

guistic knowledge obtained can be very noisy. Naive methods such as using only the

linguistic knowledge to predict the predicates or multiplying the conditional probability

with the data-driven model’s output fail. Fortunately, since the teacher network of our

LK-distillation framework is constructed from the student network that is also supervised

by the labeled data, a well-trained student network can help correct the errors from the

noisy external probability. To achieve good predictive power on the seen and unseen rela-

tionships, we obtain the linguistic knowledge from both training data and the Wikipedia

text corpus by a weighted average of their conditional probabilities when we construct the

teachers’ network, as shown in Eq. 3.4. We conduct a two-step knowledge distillation:

during the first several training epoches, we only allow the student to absorb the knowl-
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edge from training annotations to first establish a good data-driven model. After that, we

start distilling the external knowledge together with the knowledge extracted from train-

ing annotations weighted by the balancing term C as shown in Eq. 3.4. The balancing

terms are chosen by a validation set we select randomly from the training set (e.g., in

VRD dataset, we select 1,000 out of 4,000 images to form the validation set) to achieve a

balance between good generalization on the zero-shot and good predictive power on the

entire testing set.

3.6 Semantic and Spatial Representations

In [1], Lu et al.used the cropped image containing the union of two objects’ bound-

ing boxes to predict the predicate describing their relationship. While the cropped image

encodes the visual appearance of both objects, it is difficult to directly model the strong

semantic and spatial correlations between predicates and objects, as both semantic and

spatial information is buried within the pixel values of the image. Meanwhile, the seman-

tic and spatial representations capture similarities between visual relationships, which can

generalize better to unseen relationships.

We utilize word-embedding [38] to represent the semantic meaning of each object

by a vector. We then extract spatial features similarly to the ones in [39]:

[
xmin
W

,
ymin
H

,
xmax
W

,
ymax
H

,
A

Aimg

]
, (3.6)

where W and H are the width and height of the image, A and Aimg are the areas of the

object and the image, respectively. We concatenate the above features of two objects as

the spatial feature (SF) for a 〈subj, obj〉 pair.
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We predict the predicate conditioned on the semantic and spatial representations of

the subject and object:

P (R|I) =P (pred|subj, obj, Bs, Bo, I)

· P (subj, Bs|I)P (obj, Bo|I), (3.7)

where subj and obj are represented using the semantic object representation, Bs and Bo

are the spatial features, and I is the image region of the union of the two bounding boxes.

For the BB-Union input, we use the same VGG-net [40] in [1] to learn the visual feature

representation. We adopt a pre-trained word2vec vectors weighted by confidence scores

of each object category for the subject and the object, then concatenate the two vectors as

the semantic representation of the subject and the object.

3.7 Experiments

We evaluate our method on Visual Relationship Detection [1] and Visual Genome

[2] datasets for three tasks: Predicate detection: given an input image and a set of ground

truth bounding boxes with corresponding object categories, predict a set of predicates de-

scribing each pair of objects. This task evaluates the prediction of predicates without

relying on object detection. Phrase detection: given an input image, output a phrase

〈subj, pred, obj〉 and localize the entire phrase as one bounding box. Relationship de-

tection: given an input image, output a relationship 〈subj, pred, obj〉 and both the subject

and the object with their bounding boxes.

Both datasets have a zero-shot testing set that contains relationships that never occur

in the training data. We evaluate on the zero-shot sets to demonstrate the generalization
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improvements brought by linguistic knowledge distillation.

Implementation Details. We use VGG-16 [40] to learn the visual representations

of the BB-Union of two objects. We use a pre-trained word2vec [38] model to project

the subjects and objects into vector space, and the final semantic representation is the

weighted average based on the confidence scores of a detection. For the balancing terms,

we choose C = 1 and α = 0.5 to encourage the student network to mimic the teacher and

the ground truth equally.

Evaluation Metric. We follow [1, 41] using Recall@n (R@n) as our evaluation

metric (mAP metric would mistakenly penalize true positives because annotations are not

exhaustive). For two detected objects, multiple predicates are predicted with different

confidences. The standard R@n metric ranks all predictions for all object pairs in an im-

age and compute the recall of top n. However, instead of computing recall based on all

predictions, [1] considers only the predicate with highest confidence for each object pair.

Such evaluation is more efficient and forced the diversity of object pairs. However, multi-

ple predicates can correctly describe the same object pair and the annotator only chooses

one as ground truth, e.g., when describing a person “next to” another person, predicate

“near” is also plausible. So we believe that a good predicted distribution should have

high probabilities for all plausible predicate(s) and probabilities close to 0 for remaining

ones. Evaluating only the top prediction per object pair may mistakenly penalize correct

predictions since annotators have bias over several plausible predicates. So we treat the

number of chosen predictions per object pair (k) as a hyper-parameter, and report R@n

for different k’s to compare with other methods [1,41,42]. Since the number of predicates

is 70, k = 70 is equivalent to evaluating all predictions w.r.t.two detected objects.
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Figure 3.2: Visualization of predicate detection results.

3.8 Evaluation on VRD Dataset

Predicate Prediction We first evaluate it on predicate prediction (as in [1]). Since [41,

44, 45] do not report results of predicate prediction, we compare our results with ones

in [1, 42].

Part 1 of Table 3.1 shows the results of linguistic knowledge distillation with dif-

ferent sets of features in our deep neural networks. In addition to the data-driven baseline

“Baseline: U only”, we also compare with the baseline that only uses linguistic priors

to predict a predicate, which is denoted as “Baseline: L only”. The “Visual Phrases”

method [42] trains deformable parts models for each relationship; “Joint CNN” [43] trains

1In predicate detection, R@100,k=1 and R@50,k=1 are equivalent (also observed in [1]) because there

are not enough objects in ground truth to produce over 50 pairs.
2The recall of different k’s are not reported in [1].We calculate those recall values using their code.
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a 270-way CNN to predict the subject, object and predicate together. The visual only

model and the full model of [1] that uses both visual input and language priors are de-

noted as “VRD-V only” and “VRD-Full”. S denotes using the student network’s output

as the final prediction; T denotes using the teacher network’s output. T+S denotes that for

〈subj, obj〉 pairs that occur in the training data, we use the teacher network’s output as

the final prediction; for 〈subj, obj〉 pairs that never occur in training, we use the student

network’s output.

End-to-end CNN training with semantic and spatial representations. Com-

paring our baseline, which uses the same visual representation (BB-Union) as [1], and

the “VRD-V only” model, our huge recall improvement (R@100/50, k=1 increases from

7.11% [1] to 34.82%) reveals that the end-to-end training with soft-max prediction outper-

forms extracting features from a fixed CNN + linear model method in [1], highlighting the

importance of fine-tuning. In addition, adding the semantic representation and the spatial

features improves the predictive power and generalization of the data-driven model.

To demonstrate the effectiveness of LK-distillation, we compare the results of using

different combinations of features with/without using LK-distillation. In Part 1 of Table

3.1, we train and test our model on only the VRD dataset, and use the training annotation

as our linguistic knowledge. “Linguistic knowledge only” baseline (“Baseline: L only”)

itself has a strong predictive power and it outperforms the state-of-the-art method [1]

by a large margin (e.g., 51.34% vs. 47.87% for R@100/50, k=1 on the entire VRD

test set), which implies the knowledge we distill in the data-driven model is reliable and

discriminative. However, since, some 〈subj, obj〉 pairs in the zero-shot test set never

occur in the linguistic knowledge extracted from the VRD train set, trusting only the
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linguistic knowledge without looking at the images leads to very poor performance on

the zero-shot set of VRD, which explains the poor generalization of “Baseline: L only”

method and addresses the need for combining both data-driven and knowledge-based

methods as the LK-distillation framework we propose does.

The benefit of LK distillation is visible across all feature settings: the data-driven

neural networks that absorb linguistic knowledge (“student” with LK) outperform the

data-driven models significantly (e.g., R@100/50, k=1 is improved from 37.15% to 42.98%

for “U+W” features on the entire VRD test set). We also observe consistent improvement

of the recall on the zero-shot test set of data-driven models that absorb the linguistic

knowledge. The student networks with LK-distillation yield the best generalization, and

outperform the data-driven baselines and knowledge only baselines by a large margin.

Unlike [32–34], where either the student or the teacher is the final output, we

achieve better predictive power by combining both: we use the teacher network to predict

the predicates whose 〈subj, obj〉 pairs occur in the training data, and use the student net-

work for the remaining. The setting “U+W+SF+LK: T+S” performs the best. Fig. 3.2(a)

and 3.2(b) show a visualization of different methods.

Phrase and Relationship Detection To enable fully automatic phrase and relationship de-

tection, we train a Fast R-CNN detector [46] using VGG-16 for object detection. Given

the confidence scores of detected each detected object, we use the weighed word2vec vec-

tors as the semantic object representation, and extract spatial features from each detected

bounding box pairs. We then use the pipeline in Fig. 3.1 to obtain the predicted pred-

icate distribution for each pair of objects. According to Eq. 3.7, we use the product of

42



the predicate distribution and the confidence scores of the subject and object as our final

prediction results. We also adopt the triplet NMS in [44] to remove redundant detections.

To compare with [1], we report R@n, k=1 for both phrase detection and relationship de-

tection. For fair comparison with [41] (denoted as “Linguistic Cues”), we choose k=10 as

they did to report recall. In addition, we report the full recall measurement k=70. Evalu-

ation results on the entire dataset and the zero-shot setting are shown in Part 1 of Tables

3.2 and 3.3. Our method outperforms the state-of-the-art methods in [1] and [41] signif-

icantly on both entire testing set and zero-shot setting. The observations about student

and teacher networks are consistent with predicate prediction evaluation. We also com-

pare our method with the very recently introduced “VIP-CNN” in [44] and “VRL” [45]

and achieve better or comparable results. For phrase detection, we achieve better results

than [45] and get similar result for R@50 to [44]. One possible reason that [44] gets bet-

ter result for R@100 is that they jointly model the object and predicate detection while

we use an off-the-shelf detector. For relationship detection, we outperform both methods,

especially on the zero-shot set.

3.9 Evaluation on Visual Genome Dataset

We also evaluate predicate detection on Visual Genome (VG) [2], the largest dataset

that has visual relationship annotations. We randomly split the VG dataset into training

(88,077 images) and testing set (20,000 images) and select the relationships whose pred-

icates and objects occur in the VRD dataset. We conduct a similar evaluation on the

dataset (99,864 relationship instances in training and 19,754 in testing; 2,056 relationship
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test instances are never seen in training). We use the linguistic knowledge extracted from

VG and report predicate prediction results in Table 3.4.

Not surprisingly, we observe similar behavior as on the VRD dataset—LK distil-

lation regularizes the deep model and improves its generalization. We conduct another

experiment in which images from Visual Genome dataset augment the training set of

VRD and evaluate on the VRD test set. From the Part 2 of Tables 3.1, 3.2 and 3.3, we

observe that training with more data leads to only marginal improvement over almost all

baselines and proposed methods. However, for all experimental settings, our LK distilla-

tion framework still brings significant improvements, and the combination of the teacher

and student networks still yields the best performance. This reveals that incorporating

additional knowledge is more beneficial than collecting more data.

3.10 Distillation with External Knowledge

The above experiments show the benefits of extracting linguistic knowledge from

internal training annotations and distilling them in a data-driven model. However, train-

ing annotations only represent a small portion of all possible relationships and do not

necessarily represent the real world distribution, which has a long tail. For unseen long-

tail relationships in the VRD dataset, we extract the linguistic knowledge from external

sources: the Visual Genome annotations and Wikipedia, whose domain is much larger

than any annotated dataset. In Table 3.5, we show predicate detection results on the VRD

test set using our linguistic knowledge distillation framework with different sources of

knowledge. From Part 2 and Part 4 of Table 3.5, we observe that using only the ex-
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Figure 3.3: Performance with varying sizes of training examples.

ternal knowledge, especially the very noisy one obtained from Wikipedia, leads to bad

performance. However, interestingly, although the external knowledge can be very noisy

(Wikipedia) and has a different distribution when compared with the VRD dataset (Vi-

sual Genome), the performance of the teacher network using external knowledge is much

better than using only the internal knowledge (Part 1). This suggests that by properly dis-

tilling external knowledge, our framework obtains both good predictive power on the seen

relationships and better generalization on unseen ones. Evaluation results of combining

both internal and external linguistic knowledge are shown in Part 3 and Part 5 of Table

3.5. We observe that by distilling external knowledge and the internal one, we improve

generalization significantly (e.g., LK from Wikipedia boosts the recall to 19.17% on the

zero-shot set) while maintaining good predictive power on the entire test set.

Fig. 3.3 shows the comparison between our student network that absorbs linguis-

tic knowledge from both VRD training annotations and the Wikipedia text (denoted as

“Our Method”) and the full model in [1] (denoted as “VRD-Full”). We observe that

our method significantly outperforms the existing method, especially for the zero-shot
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(relationships with 0 training instance) and the few-shot setting (relationships with few

training instances, e.g., ≤ 10). By distilling linguistic knowledge into a deep model, our

data-driven model improves dramatically, which is hard to achieve by only training on

limited labeled images.

3.11 Conclusion

We proposed a framework that distills linguistic knowledge into a deep neural net-

work for visual relationship detection. We incorporated rich representations of a visual

relationship in our deep model, and utilized a teacher-student distillation framework to

help the data-driven model absorb internal (training annotations) and external (public text

on the Internet) linguistic knowledge. Experiments on the VRD and the Visual Genome

datasets show significant improvements in accuracy and generalization capability.
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Entire Set Zero-shot

R@100/501 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

Part 1: Training images VRD only

Visual Phrases [42] 1.91 - - - - -

Joint CNN [43] 2.03 - - - - -

VRD-V only [1] 7.11 37.20 2 28.36 3.52 32.34 23.95

VRD-Full [1] 47.87 84.34 70.97 8.45 50.04 29.77

Baseline: U only 34.82 83.15 70.02 12.75 69.42 47.84

Baseline: L only 51.34 85.34 80.64 3.68 18.22 8.13

U+W 37.15 83.78 70.75 13.44 69.77 49.01

U+W+L:S 42.98 84.94 71.83 13.89 72.53 51.37

U+W+L:T 52.96 88.98 83.26 7.81 40.15 32.62

U+SF 36.33 83.68 69.87 14.33 69.01 48.32

U+SF+L:S 41.06 84.81 71.27 15.14 72.72 51.62

U+SF+L:T 51.67 87.71 83.84 8.05 41.51 32.77

U+W+SF 41.33 84.89 72.29 14.13 69.41 48.13

U+W+SF+L: S 47.50 86.97 74.98 16.98 74.65 54.20

U+W+SF+L: T 54.13 89.41 82.54 8.80 41.53 32.81

U+W+SF+L: T+S 55.16 94.65 85.64 - - -

Part 2: Training images VRD + VG

Baseline: U 36.97 84.49 70.19 13.31 70.56 50.34

U+W+SF 42.08 85.89 72.83 14.51 70.79 50.64

U+W+SF+L: S 48.61 87.15 75.45 17.16 75.26 55.41

U+W+SF+L: T 54.61 90.09 82.97 9.23 43.21 33.40

U+W+SF+L: T+S 55.67 95.19 86.14 - - -

Table 3.1: Predicate Detection on VRD Testing Set. Part 1 uses the VRD training images;

Part 2 uses the training images in VRD [1] and images of Visual Genome (VG) [2] dataset.

47



Phrase Detection Relationship Detection

R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50,

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

Part 1: Training images VRD only

Visual Phrases [42] 0.07 0.04 - - - - - - - - -

Joint CNN [43] 0.09 0.07 - - - - 0.09 0.07 - - - -

VRD - V only [1] 2.61 2.24 - - - - 1.85 1.58 - - - -

VRD - Full [1] 17.03 16.17 25.52 20.42 24.90 20.04 14.70 13.86 22.03 17.43 21.51 17.35

Linguistic Cues [41] - - 20.70 16.89 – – – – 18.37 15.08 – –

VIP-CNN [44] 27.91 22.78 - - – – 20.01 17.32 - - – –

VRL [45] 22.60 21.37 - - – – 20.79 18.19 - - – –

U+W+SF+L: S 19.98 19.15 25.16 22.95 25.54 22.59 17.69 16.57 27.98 19.92 28.94 20.12

U+W+SF+L: T 23.57 22.46 29.14 25.96 29.09 25.86 20.61 18.56 29.41 21.92 31.13 21.98

U+W+SF+L: T+S 24.03 23.14 29.76 26.47 29.43 26.32 21.34 19.17 29.89 22.56 31.89 22.68

Part 2: Training images VRD + VG

U+W+SF+L: S 20.32 19.96 25.71 23.34 25.97 22.83 18.32 16.98 28.24 20.15 29.85 21.88

U+W+SF+L: T 23.89 22.92 29.82 26.34 29.97 26.15 20.94 18.93 29.95 22.62 31.78 22.65

U+W+SF+L: T+S 24.42 23.51 30.13 26.73 30.01 26.58 21.72 19.68 30.45 22.84 32.56 23.18

Table 3.2: Phrase and Relationship Detection: Distillation of Linguistic Knowledge. We

use the same notations as in Table 3.1.
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Phrase Detection Relationship Detection

R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50, R@100, R@50,

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

Part 1: Training images VRD only

VRD - V only [1] 1.12 0.95 - - - - 0.78 0.67 - - - -

VRD - Full [1] 3.75 3.36 12.57 7.56 12.92 7.96 3.52 3.13 11.46 7.01 11.70 7.13

Linguistic Cues [41] - - 15.23 10.86 - - - - 13.43 9.67 - -

VRL [45] 10.31 9.17 - - – – 8.52 7.94 - - – –

U+W+SF+L: S 10.89 10.44 17.24 13.01 17.24 12.96 9.14 8.89 16.15 12.31 15.89 12.02

U+W+SF+L: T 6.71 6.54 11.27 9.45 9.84 7.86 6.44 6.07 9.71 7.82 10.21 8.75

Part 2: Training images VRD + VG

U+W+SF+L: S 11.23 10.87 17.89 13.53 17.88 13.41 9.75 9.41 16.81 12.72 16.37 12.29

U+W+SF+L: T 7.03 6.94 11.85 9.88 10.12 8.97 6.89 6.56 10.34 8.23 10.53 9.03

Table 3.3: Phrase and Relationship Detection: Distillation of Linguistic Knowledge -

Zero Shot. We use the same notations as in Table 3.1.

Entire Set Zero-shot

R@100/50 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

U 37.81 82.05 81.41 7.54 81.00 65.22

U+W+SF 40.92 86.81 84.92 8.66 82.50 67.72

U+W+SF+L: S 49.88 91.25 88.14 11.28 88.23 72.96

U+W+SF+L: T 55.02 94.92 91.47 3.94 62.99 47.62

U+W+SF+L: T+S 55.89 95.68 92.31 - - -

Table 3.4: Predicate Detection on Visual Genome Dataset. Notations are the same as in

Table 3.1.
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Entire Set Zero-shot

R@100/50 R@100 R@50 R@100/50 R@100 R@50

k=1 k=70 k=70 k=1 k=70 k=70

Part 1 LK: VRD

VRD-V only [1] 7.11 37.20 28.36 3.52 32.34 23.95

VRD-Full [1] 47.87 84.34 70.97 8.45 50.04 29.77

U+W+SF+L: S 47.50 86.97 74.98 16.98 74.65 54.20

U+W+SF+L: T 54.13 89.41 82.54 8.80 41.53 32.81

Part 2 LK: VG

U+W+SF+L: S 45.00 81.64 74.76 16.88 72.29 52.51

U+W+SF+L: T 51.54 87.00 79.70 11.01 54.66 45.25

Part 3 LK: VRD+VG

U+W+SF+L: S 48.21 87.76 76.51 17.21 74.89 54.65

U+W+SF+L: T 54.82 90.63 83.97 12.32 47.22 38.24

Part 4 LK: Wiki

U+W+SF+L: S 36.05 77.88 68.16 11.80 64.24 49.19

U+W+SF+L: T 30.41 69.86 60.25 11.12 63.58 44.65

Part 5 LK: VRD+Wiki

U+W+SF+L: S 48.94 87.11 77.79 19.17 76.42 56.81

U+W+SF+L: T 54.06 88.93 81.78 9.65 42.24 34.61

Table 3.5: Predicate Detection on VRD Testing Set: External Linguistic Knowledge.
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Chapter 4: The Role of Context Selection in Object Detection

4.1 Introduction

Context captures statistical and common sense properties of the real-world and

plays a critical role in perceptual inference [47]. There are numerous studies that demon-

strate the advantages of context in object recognition [47–51]. In contrast, other inves-

tigations have revealed situations in which context does not improve the performance

of object detection [52, 53], and sometimes introducing context even decreases perfor-

mance [53]. Additionally, driven by the development of deep CNNs [54, 55], the perfor-

mance of object detection has been dramatically boosted [56–59]. While context has been

incorporated into deep learning frameworks, the performance gain from context itself has

not been significant [60,61]. This leads to the question: how important is context in object

detection when we have reasonably good detectors?

To address this question, we study possible reasons why context might not improve

detection. First, imperfect extraction of context information introduces errors into contex-

tual inference. For instance, when visual context information is extracted through imper-

fect appearance-based detectors, as shown in Figure 4.1(a), incorrectly-detected regions

can introduce noise into contextual inference, limiting the gain from context provided by

correctly detected regions. Second, contextual information that is hard to extract or has
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low predictive power can introduce errors into context that is easy to detect and is very

predictive. For example, when predicting the presence of a pillow in an image using con-

text provided by other objects of different categories, some object categories, such as beds

and sofas, which are easier to detect and have strong relationships with respect to pillow,

are informative as context. Others, such as boxes and pictures, which are either hard to

detect or irrelevant to pillows, are likely to be useless or even misleading.

To further investigate these challenges, we conduct a simulation to study the role of

context in isolation, without appearance-based clues. Since reliable contextual relation-

ships between object pairs can be most reliably learned in sufficiently structured scenes,

we utilize the SUN RGB-D [62] dataset, which is one of the largest indoor-scene datasets

and contains a large number of annotated objects. For a given image with ground truth

bounding boxes for all objects, we predict the label for each object, one at a time. The

object whose label is to be predicted is referred to as the target object and the other ob-

jects are referred to as contextual objects. For the unknown target object, we remove the

uncertainty of all remaining objects by assigning them to their ground-truth labels and use

object-to-object contextual relationships to predict the label of the target object without

access to its appearance. We observe very good prediction accuracy, which implies that,

without detection noise, simple contextual relationships between objects can boost de-

tection performance. We then study how predictive each object class is of a given target

object class by ignoring one contextual object class at a time. The results suggest that

different object classes vary in their ability to predict the presence of certain target object

categories.

Motivated by these experiments, we propose a region-based context re-scoring
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(a) Detection Results (b) Context Selection
Figure 4.1: Context Selection with Noisy Detection.

method with dynamic context selection, illustrated in figure 4.1(b), which seeks to elim-

inate false positive contextual regions while emphasizing likely true positive and infor-

mative ones. Specifically, we introduce a latent variable for each contextual region that

determines if that region will be selected to provide context information. In practice, it is

intractable to select the optimal set of contextual regions that provide the most trustwor-

thy information when contradictory evidence exists, both for and against the target object

having a certain class label. Instead, we decompose the problem by selecting informa-

tive regions that provide the strongest supporting and refuting evidence independently to

compute a For upper-bound and an Against upper-bound of the confidence score, and

then re-score the confidence for that object being in that class based on the difference be-

tween the two upper-bounds. The model for computing the two upper-bounds is trained

by latent-SVM [63]. The proposed method is evaluated on the SUN RGB-D dataset and

achieves 48.25% mean average precision (mAP), an improvement of ∼ 2.8% over using

object detections without context (45.47%). We also conduct experiments to study the

performance of the selection model. Both the simulations on pure context and the real-

world experiments using the proposed selection method demonstrate the importance of

object-to-object context and the gain attributed to the context selection scheme.
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4.2 The Role of Pure Context

We first conduct an experiment to analyze the utility of pure contextual relationships

between objects in object detection. In this experiment, we only consider the ground-truth

bounding boxes, and the label for a given box is predicted using only context information

between the target box and the remaining boxes for other objects in an image. When

predicting the label of the target object, we only consider its bounding box and inten-

tionally ignore appearance information such as color, shape and texture. Moreover, the

ground-truth labels and bounding boxes of all contextual objects are revealed to remove

the influence of uncertainty in context. We consider three types of object-to-object con-

text: co-occurrence, relative scale and spatial relationships.

Predicting Object Class using Pure Contextual Relationships Prediction is performed by

a linear classifier. Given an image I , assume there are N + 1 ground-truth objects, drawn

from M object categories. When predicting the label of a target object t, the ground-truth

bounding boxes of t and the remaining N objects are given, along with the the labels for

all objects other than t. The confidence that object t is in class T is:

Score(otT ) =
N∑
j=1

M∑
i=1

[Co(otT , oji;wco) + Sc(otT , oji;wsc) + Sp(otT , oji;wsp)] · lji + b,

(4.1)

where otT indicates that the target object t is assigned label T , and oji indicates that the jth

contextual object is in class i, lji is a binary indicator variable with lji = 1{labelj = i},

and b is a bias term. The terms Co(·), Sc(·) and Sp(·) measure co-occurrence, relative
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scale and spatial relationship defined in equation (4.2):

Co(otT , oji;wco) = wco(T, i) · log dco(otT , oji) (4.2)

Sc(otT , oji;wco) = wsc(T, i) · log dsc(otT , oji, r)

Sp(otT , oji;wsp) = wspx(T, i) · log dspx(otT , oji, x) + wspy(T, i) · log dspy(otT , oji, y),

where wco, wsc, wsp are weight vectors for each set of contextual features respectively.

The term dco(otT , oji) is the likelihood that a target object t of category T and object

j of category i co-occur in the same image. The term dsc(otT , oji, r) is the likelihood

that a target object t of category T and object j of category i have relative scale ratio r.

The terms dspx(otT , oji, x) and dspy(otT , oji, y) are the likelihoods that a target object t of

category T and object j of category i have relative spatial distance (distance along one

axis normalized by the height/width of the image) x along X-axis, and y along Y-axis,

respectively. The likelihoods are learned from the statistics of the training set. For the co-

occurrence context information, we use a two-bin histogram to represent the likelihood

for the co-occurrence of a target-context object pair. For the relative scale and the spatial

context, we categorize the relative scale ratios and relative distances into n slots and use

an n-bin histogram to represent the likelihoods.

Given this linear model and the features extracted based on the likelihoods, we

train a multi-class classifier using structural SVM [64]. To evaluate the performance of

object detection using pure context, we compute prediction accuracies on the 19 common

objects used in the SUN RGB-D dataset; the same object categories are used as contex-

tual objects. The average accuracy is 70.68%, which is quite high considering that no

appearance information is utilized.
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The Role of Different Contextual Object Categories The above experiment shows the

predictive potential of pure context. Do all object categories provide equally informative

context when predicting the label of a target object, or are some of them more infor-

mative than others? To answer this question, we evaluate the predictive power of each

object category with respect to a given target object category. For each target object

category T , we measure the relative accuracy loss (RAL), defined as RAL(T,C, i) =

AccuracyC−i(T )−AccuracyC(T )

AccuracyC(T )
, when removing the ith object category from the set C of con-

textual object categories. Some RAL examples are shown in Table 4.1 and 4.2. For each

target object category, we show the object categories that lead to the top five largest RALs.

We observed that different object categories have significantly different predictive power

depending on certain object categories.

Table 4.1: Relative Accuracy Loss

(RAL): T = Pillow

pillow bed sofa lamp night-

stand

RAL 0.28 0.24 0.17 0.08 0.04

Table 4.2: Relative Accuracy Loss

(RAL): T = Bookshelf

book-

shelf

chair desk table box

RAL 0.35 0.27 0.17 0.11 0.03

In summary, pure contextual information between object pairs has high predictive

power, but each contextual-object category, not surprisingly, predicts some target cate-

gories much better than others.

4.3 Region-based Context Re-scoring with Dynamic Context Selection

Based upon the above analysis, we propose a model to improve detection based

on context, where contextual objects are detected automatically and are thus noisy prob-
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abilistic detections. We utilize the appearance clues from state-of-the-art detectors for

predicting a target object’s label. The same contextual relationships discussed in the pre-

vious analysis between a detected target bounding box and the remaining ones are uti-

lized, but each box is a region with an (M + 1) associated probability distribution over

the possible labels including the background. We introduce binary latent variables for

all contextual regions, indicating whether a contextual region is selected in the context

re-scoring process.

Test-Time Re-scoring using For-and-Against Upper Bounds We propose a region-based

context re-scoring model with context selection. The re-scored confidence for the target

object t being in category T is:

Score(otT ) =w0 logA(otT ) +
N∑
j=1

M∑
i=1

[Co(otT , oji;wco) + Sc(otT , oji;wsc) + Sp(otT , oji;wsp)

(4.3)

+ wAc(i) logAc(oji)] · lj + b,

where A(otT ) and Ac(oji) represent the appearance-based confidence scores of the target

and the contextual objects, w0 and wAc(i) are the corresponding weights, and lj is the

binary indicator variable for context selection. The proposed method can be viewed as a

tree model where the target object (the root) collects context information from the selected

contextual objects (the leaves). In contrast to traditional graphical models, the proposed

method is an approximation that decomposes the re-scoring process into two independent

ones due to the intractability of jointly solving the context selection with contradictory

context information.
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Our model, intuitively, corresponds to a courtroom where the prosecutors tries to

prove that the target object does not come from a given class by providing the most com-

pelling negative evidence (a small set of confidently detected context objects whose pres-

ence is inconsistent with that label for the target object), while the defendant’s lawyer

provides the most compelling evidence for the truth of the claim that the target object

is from the given class. Our goal is to learn, from training data, how these ”arguments”

should be constructed for a given target class. That is, we seek to learn a computational

model for a multi-valued logic [65] in an attempt to avoid noise in detection and ambiva-

lence in contextual prediction (from the large number of incorrect and irrelevant potential

objects in an image) from overwhelming the clear and compelling evidence concerning

the identity of the target object. This type of multi-valued logic has been used before for

human detection (where reasoning considered occlusion and image border effects [66]),

but actually learning how to choose these evidential arguments from training data has

not been done before. So, our solution involves identifying the different sources that

provide supporting and refuting evidence independently, and then to combine the degree

of belief for and the degree of belief against to obtain the final confidence of a target

object being in class T . Specifically, we first re-score each target object t by selecting

the evidence that most strongly supports it being in a certain class to compute its For-

Score, and select the evidence that most strongly argues against it for its Against-Score.

Both the For-Score and the Against-Score can be computed by maximizing function (4.3)

over all possible indicator vectors that consist of indicator variables for all contextual

regions, but with different weight vectors. The weight vector for computing the For-

Score is learned with positive samples that are in class T , while the weight vector for
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the Against-Score considers the objects that are not in class T as the positive samples.

The For-Score can be viewed as a belief upper bound for a target object being in class

T . In both cases we select contextual regions with high appearance-based confidence

scores by forcing the weight wAc(i) to be positive. The final degree of belief for the tar-

get object t being in class T is the margin between the For-and-Against upper bounds:

Score(otT ) = ScoreFor(otT )− ScoreAgainst(otT ).

Training with Latent-SVM The proposed re-scoring model with dynamic context se-

lection can be trained using latent-SVM [63]. The processes for learning the weights for

computing the For-Score and the Against-Score are the same except for the choice of pos-

itive samples. We describe the general training process. The weight vector and feature

vector for an sample x are shown in equation 4.4 and 4.5.

w = {w0,wco,wsc,wsp,wAc , b} , (4.4)

φ(x, l) = {logA(otT ),
N∑
j=1

log dco(otT , oj1) · lj, (4.5)

· · · ,
N∑
j=1

log dco(otT , ojM) · lj,
N∑
j=1

log dsc(otT , oj1) · lj,

· · · ,
N∑
j=1

log dsc(otT , ojM) · lj,
N∑
j=1

log dsp(otT , oj1) · lj,

· · · ,
N∑
j=1

log dsp(otT , ojM) · lj,
N∑
j=1

logAc(oj1) · lj · · · ,
N∑
j=1

logAc(ojM) · lj, 1},

where l is the vector consists of indicator variables.

The re-scored confidence for a sample x is determined by a classifier using a func-
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tion of form:

fw(x) = max
l∈L(x)

w · φ(x, l), (4.6)

where L(x) consists of all possible latent vectors for sample x. The objective function to

be minimized is:

loss(w) =
1

n

n∑
i=1

max(0, 1− yifw(xi)) +
λ

2
‖w‖2, (4.7)

where we adopt the hinge loss to minimize the loss in a max-margin manner. The constant

λ is used to weight the regularization term.

Although a latent-SVM leads to a non-convex optimization, we can efficiently solve

it using coordinate descent by leveraging its semi-convexity property. The coordinate

descent method involves two steps. Firstly, positive samples are relabeled by selecting

contextual-regions that scores the target object highest by solving a linear programming

problem:

l = argmaxl∈L(x)w · φ(x, l), (4.8)

and then, the weight vector w is optimized by solving a convex optimization problem by

minimizing the loss in equation (5.1) given the relabeled positive samples.

4.4 Experiments

Dataset We use the SUN RGB-D dataset, which contains images from [67–69], to eval-

uate our proposed method. We consider the 19 most common classes in the dataset. The

performance is evaluated through the average precision (AP) of object detection. For com-
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parison, we evaluated several R-CNN based detectors, and chose as the baseline one that

utilizes the depth modality by supervision transfer (ST) [59], which uses object propos-

als from [70] and yields state-of-the-art mAP on the SUN RGB-D dataset for 2D object

detection.

4.5 Context Selection Model and Baseline Models

Besides ST, we also compare our context selection model (CS) with the baselines

including the one that ”selects all” (SA) contextual regions and the one that only con-

siders either the For upper-bound (FUB) or the Against upper-bound (AUB). For each

object category T, we train the model based upon appearance-based detections using

latent-SVM. When predicting a target object’s label, we set a precision threshold (and

choose corresponding appearance-based confidence score thresholds of all contextual ob-

jects), and only consider detections with scores higher than the thresholds as potential

contextual objects to ensure the context precision for the potential contextual objects of

each class reaches the precision threshold. To train the FUB model, we label boxes that

have ground-truth labels in class T as positive samples and select from supporting evi-

dence to obtain the For upper-bound. The training process for the AUB model is obtained

by simply reversing the positive and negative training labels. During the test, for each tar-

get object t, the context selection model selects supporting refuting evidence separately

to compute the FUB and the AUB, and then uses the margin between them as the final

confidence score for object t being in class T .

Does context selection work? We compare the context selection model with the
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select-all model by measuring average precision. Table 4.3 shows the average precision of

the 19 object classes when the precision threshold for contextual regions is set as 0.4. We

achieve only a 0.43% mAP gain by the SA model, with some classes improving notably

(counter, desk, lamp and pillow), while others (bathtub, chair, monitor, dresser, sofa, sink

and toilet) degrading when considering all contextual regions. When we apply context

selection, we see large improvement in AP on almost all classes compared to both the ST

and SA baselines. We observe ∼ 2.8% mAP gain by the context selection method.

bathtub bed book-

shelf

box chair counter desk door dresser garbage

bin

lamp monitor night

stand

pillow sink sofa table tv toilet mAP

ST

[59]

67.70 76.44 43.45 18.02 42.15 32.06 24.94 22.93 40.27 52.83 49.73 47.80 56.30 48.75 19.92 50.82 42.83 45.66 81.35 45.47

SA 59.61 77.62 42.12 19.46 40.01 35.80 33.86 23.75 39.72 50.81 51.19 43.87 61.44 51.20 17.61 49.37 45.86 48.39 80.37 45.90

FUB 67.75 78.89 45.60 22.11 39.19 34.82 29.54 23.92 41.19 52.51 53.22 48.76 59.61 53.06 23.19 50.72 43.74 50.68 81.53 47.37

AUB 67.54 78.77 45.64 20.42 40.21 35.06 26.80 23.75 41.04 52.97 52.84 48.93 58.62 51.69 23.32 52.07 46.65 45.59 81.51 47.02

CS 69.15 80.09 45.94 22.33 42.04 35.57 29.84 24.44 40.85 53.51 53.67 48.96 60.18 54.19 24.60 48.99 48.86 51.06 82.50 48.25

Table 4.3: Average Precision (AP) on SUN RGB-D Test Set.

How does context selection compare to simple threshold-based filtering? One

may wonder whether the selection method can be modeled by a simple threshold-based

selection on contextual regions based on their appearance-based confidence scores. We

conducted an experiment to compare the performance of the proposed context selection

method with that of the select-all method augmented with the choice of different preci-

sion thresholds for contextual regions. The results are shown in Figure 4.2. We observe

that with the increase of precision threshold for contextual regions, the select-all method

does perform better due to reduced noise from contextual regions. The context selection

method also consistently improves as the precision threshold raises is raised from 0.1 to

0.5. Performance drops when the precision threshold exceeds 0.5. At this point, too few
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Figure 4.2: mAP v.s. Precision Threshold.

relevant regions survive the precision threshold. Generally, the context selection method

outperforms the select-all method with precision-threshold-based filtering.

Does the margin between For-and-Against upper-bounds help? Performance of

context selection methods that use only one of the For upper-bound, the Against upper-

bound and the margin between them are shown in Table 4.3. By ignoring the against

evidence in the FUB method, the confidence scores of true positives increase as expected,

but the false positives are also boosted higher. As we subtract the AUB from the FUB,

we introduce refuting evidence to balance the boosting effect, and reduce false positives.

We observe a performance gain of about ∼ 1.0% by combining the two upper-bounds

together.

Does the selection model do more than select true positive contextual regions?

Section 4.2 illustrated the differential predictive power of contextual objects for a certain

target object. Ideally the context selection method should select contextual objects that

exist in the image and also have strong predictive power. To test that this is indeed occur-
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ring, we compare to the setting where an oracle labels the true positive contextual objects

for the model to choose from. We show the APs for the SA and the CS methods with

oracle in both training and testing phases in Table 4.4 and label them as SA-O and CS-O,

respectively. For each target object class and a given contextual object class i, we show

the ratio between the counts of selected true positive contextual objects in class i and the

total number of contextual objects in that class as the selecting ratio. The top five contex-

tual objects that have the highest selecting ratios of two target object classes are shown in

Table 4.5 and 4.6. We notice that the selecting ratios vary for different contextual object

categories, and by selecting a subset of informative contextual objects, the CS-O method

outperforms the SA-O method. The performance of CS-O is the upper-bound of the con-

text selection model, and the proposed selection model is a good approximation to the

upper-bound.

Visualization of Selected contextual regions To visualize the performance of the

context selection method, we show the selected contextual regions for four target object

classes in Figure 4.3. The selection model tends to gather context information from the

true positive contextual regions that can provide strong supporting or refuting evidence to

predict the label of the target object.

bathtub bed book-

shelf

box chair counter desk door dresser garbage

bin

lamp monitor night

stand

pillow sink sofa table tv toilet mAP

CS 69.15 80.09 45.94 22.33 42.04 35.57 29.84 24.44 40.85 53.51 53.67 48.96 60.18 54.19 24.60 48.99 48.86 51.06 82.50 48.25

SA-O 70.07 78.95 45.48 23.29 42.91 36.97 33.59 24.37 42.39 52.44 52.78 49.15 61.81 53.38 26.49 53.44 48.71 49.16 81.73 48.79

CS-O 73.67 80.56 50.42 23.08 47.51 37.33 30.98 24.98 41.03 54.45 56.49 50.08 60.25 55.29 25.30 49.09 49.27 45.91 83.55 49.43

Table 4.4: Average Precision (AP) on SUN RGB-D Test Set: with Oracle.
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Table 4.5: Selecting Ratio: T = Pil-

low

bed sofa pillow night-

stand

lamp

Ratio 0.92 0.89 0.84 0.79 0.74

Table 4.6: Selecting Ratio: T =

Bookshelf

desk table book-

shelf

chair sofa

Ratio 0.97 0.92 0.81 0.77 0.76
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Figure 4.3: Visualization of For-Against Context Selection.

4.6 Conclusion

We analyzed the predictive potential of context in an idealized case where the labels

of all contextual objects are known, and only these labels and their relationships to the

target objects are used to predict the target object label. Through these experiments we

found that, despite ignoring the appearance of the target object, pure context is effective

at predicting the target object. We also discovered that different categories vary in their

ability to predict a certain target object class. Based on these experiments, we proposed a
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region-based context re-scoring method with dynamic context selection to automatically

improve the pool of contextual objects. Our method achieved significant performance

gains when compared with the appearance-based detector and the contextual model that

simply selects everything. An interesting direction of the future work is to use depth in-

formation as a contextual cue, and apply context selection in an end-to-end deep learning

framework.
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Chapter 5: ReMotENet: Efficient Relevant Motion Event Detection for

Large-scale Home Surveillance Videos

5.1 Introduction

With the development of home security and surveillance system, more and more

home surveillance cameras have been installed to monitor customers’ home 24/7 for se-

curity and safety purpose. Most existing commercial solutions run motion detection on

the edge (camera), and show the detected motion events (usually in shot clips of, e.g.,

15s) for end users’ review on the web or mobile.

Motion detection has been a challenging problem in spite of many years’ devel-

opment in academia and industry [71, 72]. Many nuisance alarm sources, such as tree

motion, shadow, reflections, rain/snow, flags, result in many irrelevant motion events for

customers.

Relevant motion detection is responsive to customers’ needs. It involves pre-specified

relevant objects, e.g., people, vehicles and pets, and these objects should have human rec-

ognizable location changes in the video. It not only helps to remove nuisance events, but

also supports applications such as semantic video search and video summarization.

As shown in Figure 5.1, one natural method is to apply state-of-the-art object de-
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tectors based on deep convolutional neural networks (CNNs) [43, 46, 73–76] to identify

objects of interest. Given a video clip, background subtraction is applied to each frame to

filter out stationary frames. Object detection is then applied to frames that have motion to

identify the moving objects. Finally, the system generates trackers on the detection results

to filter out temporally inconsistent falsely detections or stationary ones.

There are at least two problems with this object detection based method. First,

it is computationally expensive, especially the object detection module. The state-of-

the-art object detectors [43, 46, 73–76] need to be run on expensive GPUs devices and

achieve at most 40-60 FPS [77]. Scaling to tens of thousands of motion events coming

from millions of cameras becomes cost ineffective. Second, the method usually consists

of several separate pre-trained methods or hand-crafted rules, and does not fully utilize

the spatial-temporal information of an entire video clip. For example, moving object

categories are detected mainly by object detection, which ignores motion patterns that

can also be utilized to classify the categories of moving objects.

To address these problems, we propose a network for relevant motion event de-

tection, ReMotENet, which is a unified, end-to-end data-driven method using Spatial-

temporal Attention-based 3D ConvNets to jointly model the appearance and motion of

objects-of-interest in a video event. As shown in Figure 5.1, ReMotENet parses an en-

tire video clip in one forward pass of a neural network to achieve significant speedup (up

to 20k×) on a single GPU. This makes the system easily scalable to millions of motion

events and reduces latency. Meanwhile, it exploits the properties of home surveillance

videos, e.g., relevant motion is sparse both spatially and temporally, and enhances 3D

ConvNets with a spatial-temporal attention model and frame differencing to encourage
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Figure 5.1: Comparison between the traditional object detection based method and Re-

MotENet.

the network to focus on relevant moving objects.

To train and evaluate our model, we collected a large dataset of 38,360 real home

surveillance video clips of 15s from 78 cameras covering various scenes, indoor/outdoor,

day/night, different lighting conditions and weather. To avoid the cost of training an-

notations, our method is weakly supervised by the results of the object detection based

method. For evaluation, we manually annotated 9,628 video clips with binary labels of

relevant motion caused by different objects. Experiments demonstrate that ReMotENet

achieves comparable or even better performance, but is three to four orders of magni-

tude faster than the object detection based method. Our network is efficient, compact and

light-weight. It can precisely detect relevant motion in a 15s video in 4-8 milliseconds on

a GPU and a fraction of second on a CPU with model size of less than 1MB.
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Figure 5.2: ReMotENet for Relevant Motion Event Detection.

5.2 Our Approach

To dramatically speedup relevant motion event detection and improve its perfor-

mance, we propose a novel network for relevant motion event detection, ReMotENet,

which is a unified, end-to-end data-driven method using spatial-temporal attention-based

3D ConvNets to jointly model the appearance and motion of objects-of-interest in a video.

Analyzing an Entire Video Clip at Once In contrast to object detection based method

based on frame-by-frame processing, we propose a unified, end-to-end data-driven frame-

work that takes an entire video clip as input to detect relevant motion using 3D Con-

vNets [78].

One crucial advantage of using 3D ConvNets is that they can parse an entire video

clip in one forward pass of a deep network, which is extremely efficient. Meanwhile,

unlike the traditional pipeline that conducts object detection and tracking independently,

3D ConvNets is an end-to-end model that jointly models the appearance of objects and

their motion patterns. To fit an entire video in memory, we down-sample the video frames
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spatially and temporally. We sample one FPS to uniformly sample 15 frames from a 15s

video clip, and reduce the original resolution (1280×720) by a factor of 8. Since we focus

on classifying whether there is a relevant motion in the video rather than fine-grained

activity recognition, we believe that FPS 1 is enough to capture the motion. The input

tensor of our 3D ConvNets is 15×90×160×3.

5.3 ReMotENet using Spatial-temporal Attention-based C3D

Frame Differencing Global or local context of both background or foreground objects

has proven to be useful for activity recognition task [79,80] (e.g., some sports only happen

on playgrounds; some collective activities have certain spatial arrangements of the objects

that participant). However, since home surveillance cameras capture different scenes at

different times with various weather and lighting conditions, the same relevant motion

could involve different background and foreground arrangements.

So, we conduct a simple and efficient frame differencing on the 4D input tensor

to suppress the influence of the background and foreground variance: for each frame

sub-sampled from a video clip, we select its previous frame as a “reference-frame” and

difference them. The image quality of surveillance cameras is usually low, and the mov-

ing objects are relatively small due to large field of view. As a result, it requires high

resolution videos for object detector to capture fine-grained features, such as texture, to

detect relevant objects. However, for ReMotENet with frame differencing, since we skip

explicit object detection, it is sufficient for the network to learn coarse appearance fea-

tures of objects, e.g., shape, contour and aspect-ratio with frames of low resolution, which
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leads to significant speedup.

Spatial-temporal Attention-based 3D ConvNets Most video clips captured by a home

surveillance camera may only contain the stationary scene with irrelevant motion such as

shadow, rain and parked vehicles. Meanwhile, our network should be capable of differ-

entiating appearance and motion pattern of different objects-of-interest.

Besides using frame differencing to suppress the background, we propose a Spatial-

Temporal Attention-based (STA) model as shown in Figure 6.4 to guide the network to

only pay attention to the moving objects of interest and filter out foreground motion

caused by irrelevant objects. Unlike most of the attention models that are trained end-

to-end with the groundtruth of final predictions, we use the detection confidence scores

and bounding boxes of the moving relevant objects obtained from a general detector (e.g.,

Faster R-CNN) as pseudo-groundtruth to train the STA model.

The supervision from the detection results suppresses the influence of features from

irrelevant regions of each frame, and the binary labels of motion adjusts the STA layer to

pay attention to the spatial-temporal locations that are most informative for predicting the

relevant motion. The spatial-temporal attention model can be viewed as a combination of

multi-task learning and traditional attention model. In the weakly supervised framework,

it helps our network to learn from noisy labels and recover some of the mistakes caused by

the object detection based method. For instance, some relevant motion is missed because

of bad thresholds of the tracking module, but the object detector has correctly detected

the relevant objects. The STA model trained with those detection results is helpful for our

network to recover the binary prediction mistake.

72



Different from the original C3D model that conducts max pooling both spatially and

temporally [78], we separate the spatial and temporal max pooling as shown in Figure 6.4.

This allows us to generate an attention mask on each input frame to capture fine-grained

temporal information, and makes the network deeper to learn better representations. We

first apply five layers of 3D convolutions (Conv1-Conv5) with spatial-wise max pooling

on the 4D input tensor after frame differencing to extract the appearance based features.

Then, we apply another 3D convolution layer (STA layer) on the output of Pool5 to obtain

a binary prediction of whether our system should pay attention to each spatial-temporal

location. We conduct a softmax operation on the binary predictions to compute a soft

probability of attention for each spatial-temporal location. We scale the features from

Pool5 by applying an element-wise multiplication between the attention mask and the

extracted features. Another four layers of 3D ConvNets are used with temporal max

pooling to abstract temporal features.

The network in [78] utilized several fully connected layers after the last convolution

layer, which leads to a huge number of parameters and computations. Inspired by [81],

we apply a spatial global average pooling (GAP) to aggregate spatial features after Pool9

and use several 1×1×1 convolution layers with two filters (denoted as “Binary” layers)

to predict the final binary results. The use of GAP and 1×1×1 convolutions significantly

reduces the number of parameters and model size of our method. The final outputs of our

network are several binary predictions indicating whether there is any relevant motion of

a certain object or a group of objects. The detailed network structure is shown in Table

5.1. For each Conv layer, we use ReLU as its activation.
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Layer Input Size Kernel Size Stride Num of Filters

Conv1 15×90×160×3 3×3×3 1×1×1 16

Pool1 15×90×160×3 1×2×2 1×2×2 -

Conv2 15×45×80×16 3×3×3 1×1×1 16

Pool2 15×45×80×16 1×2×2 1×2×2 -

Conv3 15×23×40×16 3×3×3 1×1×1 16

Pool3 15×23×40×16 1×2×2 1×2×2 -

Conv4 15×12×20×16 3×3×3 1×1×1 16

Pool4 15×12×20×16 1×2×2 1×2×2 -

Conv5 15×6×10×16 3×3×3 1×1×1 16

Pool5 15×6×10×16 1×2×2 1×2×2 -

STA 15×3×5×16 3×3×3 1×1×1 2

Conv6 15×3×5×16 3×3×3 1×1×1 16

Pool6 15×3×5×16 2×1×1 2×1×1 -

Conv7 8×3×5×16 3×3×3 1×1×1 16

Pool7 8×3×5×16 2×1×1 2×1×1 -

Conv8 4×3×5×16 3×3×3 1×1×1 16

Pool8 4×3×5×16 2×1×1 2×1×1 -

Conv9 2×3×5×16 3×3×3 1×1×1 16

Pool9 2×3×5×16 2×1×1 2×1×1 -

GAP 1×3×5×16 1×3×5 1×1×1 -

Binary 1×1×1×16 1×1×1 1×1×1 2

Table 5.1: Network Structure of the ReMotENet using Spatial-temporal Attention-based

3D ConvNets

5.4 Network Training

Considering the large volume of home surveillance videos, it is time-consuming to

annotate each training video with binary labels. So, we adopt a weakly-supervised learn-

ing framework that utilizes the pseudo-groundtruth generated from the object detection
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based method (details are discussed in section 5.6). Besides binary labels, we also uti-

lize the pseudo-groundtruth of detection confidence scores and bounding boxes of moving

objects-of-interest obtained from the object detection based method to train the STA layer.

The loss function of STA layer is:

loss =
1

N

(
C1

∑
n

∑
i

wn,iCE(gn,i, yn,i) (5.1)

+
C2

W ·H · T
∑
n

∑
w,h,t

CE(stan,w,h,t, Gstan,w,h,t)
)

The first part is the cross-entropy loss (CE) for each relevant motion category; the

second part is the CE loss between the predicted attention of each spatial-temporal loca-

tion produced by “STA” layer and the pseudo-groundtruth obtained from the object detec-

tor. W,H, T are spatial and temporal size of the responses of layer “STA”; yn,i and gn,i are

the predicted and groundtruth motion labels of the nth sample; stan,w,h,t and Gstan,w,h,t

are the predicted and groundtruth attention probabilities; wn,i is the loss weight of the nth

sample, which is used to balance the biased number of positive and negative training sam-

ples for the ith motion category; N is the batch size; C1 and C2 are used to balance binary

and STA loss. We choose C1 = 1 and C2 = 0.5 in this paper and train our network using

Adam optimizer [82] with 0.001 initial learning rate. The training process converges fast

with batch size 40 (¡5,000 iterations).
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5.5 Experiments

5.6 Dataset

We collect 38,360 video clips from 78 home surveillance cameras. Each video is

15s and captured with FPS 10 and 1280×720 resolutions. The videos cover different

times and various scenes, e.g., front door, backyard, street and indoor living room. The

longest period a camera recorded is around 3 days. Those videos mostly capture only sta-

tionary background or irrelevant motion caused by shadow, lighting changes or snow/rain.

Some of the videos contain relevant motion caused by people and vehicles (car, bus and

truck).

The “relevant motion” in our system is defined with a list of relevant objects. In

this paper, we define three kinds of relevant motion: “People motion”, caused by object

“people”; “Vehicle motion”, caused by at least one object from {car, bus, truck}; “P+V

Motion” (P+V), caused by at least one object from {people, car, bus, truck}. The detec-

tion performance of “P+V Motion” evaluates the ability of our method to detect general

motion, and the detection performance of “People/Vehicle motion” evaluates the ability

of differentiating motion caused by different kinds of objects.

Our network is trained using weak supervisions obtained from the object detection

based method. We run Faster R-CNN based object detection with FPS 10 on the original

1280×720 video frames, and apply a state-of-the-art real-time online tracker from [83]

to capture temporal consistency to obtain labels of relevant motion involving different

objects-of-interest. We first run the above method on the entire dataset to detect videos
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with relevant motion of P+V. Then, we randomly split the dataset into training and testing

set with a 3:1 ratio. This leads to a training set with 28,732 video clips and a testing set

with 9,628 video clips.

We have three annotators watching the testing videos and annotating binary labels

for P+V, people and vehicle motion. If there is any human recognizable motion of the

relevant objects in a video, we annotate “1” for the corresponding category. All three

annotators must agree with each other, otherwise we mark the video as ambiguous and

remove it from the testing set. We have 9,606 testing videos left after several rounds of

annotation and cross-checking. Among the testing set, there are 973 videos with relevant

motion events contain either people or vehicles (P+V), 429 videos have people motion

only, 594 videos have vehicle motion only and 50 videos have both motion.

5.7 Baseline: Object Detection based Method

For the object detection based method, if one tracklet has at least two frames over-

lapped with the detected bounding boxes of the relevant objects with Intersection over

Union (IOU) > 0.9, the average detection confidence score > 0.8, and the maximum rel-

ative location change ratio over the entire tracklet along width or height of the frame is

large enough (> 0.2), we consider it as a valid tracklet. If there is at least one valid track-

let of an object in a video clip, we consider that video has valid motion of the specific

object.

For background subtraction, we utilize the method proposed in [84]. We employ the

start-of-the-art real-time online tracking method from [83]. The above two methods can
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be efficiently run on CPU. For object detection, we utilized the Tensorflow Object Detec-

tion API [77]. Following the discussions in [77], we choose three state-of-the-art detec-

tors: Faster R-CNN [73] with ResNet 101 [23], SSD [74] with inception V2 [85] and SSD

with MobileNet [86]. According to [77], Faster R-CNN is the best detector considering

detection accuracy and robustness, and are widely used in many applications [4, 6, 8, 87].

However, SSD based detector is much faster while suffers some accuracy degradation.

To further reduce the computational cost of detection, MobileNet [86] is utilized as the

base network in SSD framework. SSD-MobileNet is one of the most compact and fastest

detectors. We do not compare to YOLO v2 due to its similar performance with SSD [76].

We do not compare to other detectors such as tinyYOLO [75] and SqueezeDet [88] due to

their significant degradation of performance (e.g., ¿20% reduction in mAP from YOLO

v2 to Tiny YOLO). We use F-score to jointly evaluate the detection precision and recall.

The results are shown in Table 5.2.

From the tables we conclude that Faster R-CNN based detector achieves much bet-

ter performance than the other two efficient detection methods. Meanwhile, image res-

olution and frame sample rate (FPS) have significant influence. If resolution or FPS is

small, the performance of detector and tracker drops significantly. So, to achieve rea-

sonable detection results, we need to employ robust object detection framework (Faster

R-CNN) with large FPS and resolutions, which is inefficient and heavy (with model size

> 400MB).

We also conduct experiments without tracking. In general, tracking method im-

proves precision but leads to lower recall. Taking the detecion of P+V motion using

Faster R-CNN with FPS 10 and 1280×720 resolution as an example, without tracking,
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Detector
FPS 1

1280×720

FPS 2

1280×720

FPS 5

1280×720

FPS 10

1280×720

P+V

F R-CNN 0.075 0.405 0.745 0.785

SSD-Incep 0.103 0.191 0.403 0.258

SSD-Mobile 0.048 0105 0.277 0.258

People

F R-CNN 0.116 0.519 0.766 0.795

SSD-Incep 0.156 0.276 0.467 0.549

SSD-Mobile 0.054 0.139 0.252 0.258

Vehicle

F R-CNN 0.020 0.244 0.627 0.665

SSD-Incep 0.062 0.103 0.267 0.499

SSD-Mobile 0.029 0.062 0.197 0.252

Detector
FPS 10

320×180

FPS 10

160×90

FPS 5

320×180

FPS 5

160×90

P+V F R-CNN 0.667 0.255 0.565 0.255

People F R-CNN 0.670 0.251 0.574 0.256

Vehicle F R-CNN 0.610 0.226 0.517 0.122

Table 5.2: F-score of relevant motion detection using different object detectors with dif-

ferent FPS and resolution settings.
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Network structures

of ReMotENet
C3D FD-C3D FD-D FD-D-MT

FD-D

-STA-NT

FD-D

-STA-T

FD-D-

STA-T-H

FD-D-

STA-T-32

FD-D-STA

-T-H-32

3D ConvNets? X X X X X X X X X

frame differencing? X X X X X X X X

deeper network? X X X X X X X

train STA layer with detection pseudo-GT? X X X X X

ST Attention? X X X X X

high resolution? X X

more filters? X X

AP: P+V 77.79 82.29 83.98 84.25 84.91 86.71 85.67 87.07 86.09

AP: People 62.25 72.21 73.69 74.41 75.82 78.95 79.78 77.92 77.54

AP: Vehicle 66.13 73.03 73.71 74.25 75.47 77.84 76.85 76.81 76.92

Table 5.3: The path from traditional 3D ConvNets to ReMotENet using Spatial-temporal

Attention Model.

the method will have high recall (e.g., 0.8536) but very low precision (e.g., 0.2631); with

tracking, it has lower recall (e.g., 0.7321) but much higher precision (e.g., 0.8467), and

achieves much higher F-score.

5.8 ReMotENet Performance

The outputs of ReMotENet are three binary predictions. After applying softmax

on each binary prediction, we obtain probabilities of having P+V motion, people motion

and vehicle motion in a video clip. We adopt Average Precision, which is a widely used

evaluation metric for object detection and other detection tasks from [77] to evaluate our

method. We evaluate different architectures and design choices of our methods, and re-

port the average precision of detecting P+V motion, people motion and vehicle motion

in Table 5.3. To show the improvement of our proposed method, we build a basic 3D

ConvNets following [78]. We design a 3D ConvNets with 5 Conv layers followed by
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Figure 5.3: Predicted Attention Mask of “FD-D-STA-NT” Method.

(a) PR Curve: P+V (b) PR Curve: People (c) PR Curve: Vehicle

(d) Run-time per 15s

video on GPU (second)

(e) Run-time per 15s

video on CPU (second)

(f) Model Size (KB)

Figure 5.4: Comparing with baselines.

spatial-temporal max pooling. Similar with the C3D in [78], we conduct 3×3×3 3D con-

volution with 1×1×1 stride for Conv1-Conv5, and 2×2×2 spatial-temporal max pooling

with 2×2×2 stride on Pool2-Pool5. For Pool1, we conduct 1×2×2 spatial max pooling

with 1×2×2 stride. Different from C3D in [78], we only have one layer of convolution

in Conv1-Conv5. Meanwhile, instead of several fully connected layers, we apply a global

average pooling followed by several 1×1×1 convolution layers after Conv5. The above

basic architecture is called “C3D” in Table 5.3.
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Evaluation of ReMotENet First, we evaluate the effect of frame differening. Column

2-3 in Table 5.3 show that by using frame differening (FD), our 3D ConvNets achieve

much higher average precision for all three categories of motion, especially on people

and vehicle motion detection task.

To evaluate the spatial-temporal attention model, we modify the basic C3D network

architecture to separate spatial-wise and temporal-wise max pooling as shown in Table

5.1. We call the network with nine 3D ConvNets (without the STA layer) as “FD-D”.

“FD-D-MT” denotes using multi-task learning: we use the STA layer to predict the ST

attention mask, which is trained by pseudo-groundtruth obtained from the object detection

based method, but we do not multiply the attention mask with the extracted features after

Pool5. Another model is “FD-D-STA-NT”: we multiply the attention mask with the

extracted features after Pool5 layer. However, the STA layer is trained with only binary

labels of motion categories but without the detection pseudo-groundtruth. We observe

that incorporating multi-task learning or end-to-end attention model only leads to small

improvement, but once we combine both methods, our “FD-D-STA-T” model achieves

significant improvement. Our intuition is that, adding multi-task learning alone does not

directly affect the final prediction. Meanwhile, due to the sparsity of moving relevant

objects in the videos, the number of positive and negative spatial-temporal location from

the detection pseudo-groundtruth is extremely biased. This leads to overfitting of the

model to predict the attention of all the spatial-temporal location as 0. Meanwhile, adding

attention model without multi-task learning also leads to small improvement. We observe

that without the weak supervision of specific objects and their locations, the attention

mask predicted by “FD-D-STA-NT” may focus on motion caused by some irrelevant
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objects, such as pets, trees and flags shown in Figure 5.3.

To encourage our network to pay attention to the relevant objects (in this paper,

people and vehicles), we propose our full model “FD-D-STA-T”, which can be viewed as

a combination of multi-task learning and attention model. We use the detected bounding

boxes of relevant moving objects to train the STA layer, and multiply the predicted atten-

tion mask with the extracted features from Pool5 layer. “FD-D-STA-T” achieves much

higher average precision than the previous models in all three motion categories. The

results of the above models are listed in column 5-8 of Table 5.3.

We also conduct experiments with other network design choices of ReMotENet.

For instance, we add more filters in each convolution layer, or enlarge the input resolution

from 160×90 to 320×180. As shown in Table 5.3, those design choices lead to insignif-

icant improvements. The experiments demonstrate that ReMotENet can precisely detect

relevant motion with small input FPS and resolution.

5.9 Comparing with the Object Detection based Method

Although ReMotENet is trained with the pseudo-groundtruth obtained from the

object detection based method, it outperforms the baseline in several ways:

Detection Performance. Although the training labels are noisy, ReMotENet can

learn patterns of relevant motion and generalize well. We show the PR curve of our meth-

ods and the performance of the object detection based method in Figure 5.4(a), 5.4(b) and

5.4(c). From the PR curve of three models: “C3D”, “FD-C3D” and “FD-D-STA-T”, we

demonstrate the effectiveness of frame differencing and the STA model. The PR curves of
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our full model “FD-D-STA-T” are higher than all PR points of the object detection based

method, which shows that our method can achieve similar or better performance than the

baselines by properly choosing the detection threshold. Another advantage of our method

is that it is a probabilistic model, and one can tune the threshold based on the priority of

precision or recall.

Run-time and Model Size. From Table 5.2 we observe that with a fixed detector,

the object detection based method needs large FPS and resolutions to achieve good detec-

tion performance, especially for SSD based detectors. So, we show the time and model

size benchmark results of the baselines with FPS 10 and 1280×720 resolution, which can

achieve the best detection performance, in Figure 5.4(d), 5.4(e) and 5.4(f). For baselines,

the run-time consists of the time for background subtraction, object detection and track-

ing; for ReMotENet, the run-time consists of frame differencing and the forward pass of

our 3D ConvNets. We omit the time for decoding and sampling frames from the video

clips for both methods. The model size is the size of Tensorflow model data file. We omit

the size of meta and index file. Our method can achieve 9,514×-19,515× speedup on

GPU (GeForce GTX 1080) and 3,062×-7,000× speedup on CPU (Intel Xeon E5-2650

@2.00GHz). Meanwhile, since our 3D ConvNets are fully-covolutional, and very com-

pact (16 filters per Conv layer), we can achieve 449×-1,304× reduction on model size.

Our “FD-C3D” model can analyze more than 256 15s video clips per second on GPU

and around 6 videos on CPU with a 300KB model; “FD-D-STA-T” can parse 125 or 2.5

videos of 15s on GPU or CPU devices respectively with a model less than 1MB. Our

method can not only efficiently analyze home surveillance videos on cloud with GPUs,

but also be potentially running on the edge.
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(a) Failure Cases: Object Detection based method

(b) Spatial-temporal Attention Prediction: ReMotENet (FD-D-STA-T)

(c) Spatial-temporal Attention: Pseudo-groundtruth

(d) Failure Cases: ReMotENet (FD-D-STA-T)

Figure 5.5: Visualization of results from the detection based method and ReMotENet.

5.10 Visualization

We visualize the results of the baseline and our method in Figure 5.5(a) to 5.5(d).

Figure 5.5(a) shows miss/false detection of people and vehicle motion using the object

detection based method. Due to the low quality of video, shadow, small object size and

occlusion, object detector may fail. However, because our method is a data-driven frame-

work trained specifically on the home surveillance video with the above properties, and
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our method jointly model both object appearance and motion, we can properly handle the

above cases. Figure 5.5(b) and 5.5(c) show the predicted spatial-temporal attention mask

(red rectangles) of our “FD-D-STA-T” model and the pseudo-groundtruth obtained from

the object detection based method. Although our “FD-D-STA-T” model can only predict

a coarse attention mask, it captures the motion pattern of the people in the video. Mean-

while, although trained by the pseudo-groundtruth, our method can recover mistakes of

the object detection based method (see the first figures of 5.5(b) and 5.5(c)). Figure 5.5(d)

shows several failure cases of our method. For the miss detection (the second and forth

figures), although our 3D ConvNets predict there is no relevant motion, it still correctly

predict the coarse attention mask that cover the car and people. For the falsely detected

vehicle motion (the first figure), we find that due to reflection of light, the input after

frame difference is very noisy; for the false people motion detection (the third figure),

our method falsely detect bird motion as people. With more training data with different

objects and lighting conditions, hopefully our method can recover the above mistakes and

obtain better performance.

5.11 Conclusion

We propose an end-to-end data-driven framework to detect relevant motion from

large-scale home surveillance videos. Instead of parsing a video in a frame-by-frame fash-

ion using the object detection based method, we proposed to use 3D ConvNets to parse

an entire video clip at once to dramatically speedup the process. We extended the 3D

ConvNets by incorporating a spatial-temporal attention model to encourage the network
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to pay more attention to the moving objects. Evaluations demonstrate that ReMotENet

achieves comparable or better performance than the object detection based method while

achieving three to four orders of magnitude speedup on GPU and CPU devices. Re-

MotENet is very efficient and compact, and therefore naturally implementable on the

edge (camera).
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Chapter 6: Layout-induced Video Representation for Recognizing Agent-

in-Place Actions

6.1 Introduction

Recent advances in deep neural networks have brought significant improvements

to many fundamental computer vision tasks, including video action recognition [89–96].

Current action recognition methods are able to detect, recognize or localize general ac-

tions and identify the agents (people, vehicles, etc.) performing them [78,89–91,93–101].

However, in applications such as surveillance, relevant actions often involve references to

locations and directions–for example, it might be of interest to detect (i.e.issue an alert)

a person walking towards the front door of a house, but not to detect a person walking

along the sidewalk. So, what makes an action ”interesting” is how it interacts with the

geometry and topology of the scene in which it is performed. However, the layout of even

a restricted set of scenes–cameras mounted over the entrance doors of houses monitoring

the fronts and backs of the houses–vary significantly.

We describe how to represent the geometry and topology of scene layouts so that

a network can generalize from the layouts observed in the training set to unseen layouts

in the test set. Examples of these contextualized actions in outdoor home surveillance
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<pet, move along, sidewalk>
<person, move along, sidewalk>

<vehicle, move away
(home), driveway>

<person, move away
(home), driveway>

Figure 6.1: Example agent-in-place actions and segmentation maps. Different colors

represent different places. We zoom in to the agents performing the actions for clarity.

An agent-in-place action is represented as ¡agent, action, place¿.

scenarios and the semantic segmentations of scenes from which the representations are

constructed as shown in Fig.6.1. We will refer to these contextualized actions as ”agent-

in-place” actions to distinguish them from the widely studied generic action categories.

By encoding layout information (class membership of places, layout geometry and layout

topology) into the network architecture we eliminate the need to collect massive amounts

of training data that would span the space of possible layouts. This allows the model

to abstract away appearance variations and focus on how actions interact with the scene

layouts. Without large-scale training data, a model that does not incorporate a represen-

tation of scene layout can easily overfit to the training scene layouts and exhibit poor

generalization on new scenes.

To address the generalization problem, we propose Layout-Induced Video Repre-

sentation (LIVR), which encodes a scene layout given the segmentation map of a static

scene. The representation has three components: 1) A semantic component represented
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by the characteristic functions of the semantic labels of the layouts (a set of bitmaps used

for feature aggregation in the convolutional layers of the network referred to as ”places”);

2) A geometric component represented by a set of coarsely quantized distance transforms

of each semantic place incorporated into the convolutional layers of the network; 3) A

topological component represented through the connection structure in a dynamically

gated fully connected layer of the network–essentially aggregating representations from

adjacent (more generally h-connected for h hops in the adjacency graph of the semantic

map) places. Fig.6.2 shows an illustration of the proposed framework.

The first two components require semantic feature decomposition as shown in blue

in Fig.6.2. We utilize bitmaps encoded with the semantic labels of places to decompose

video representations into different places and train models to learn place-based feature

descriptions. This decomposition encourages the network to learn features of generic

place-based motion patterns that are independent of scene layout. As part of the semantic

feature decomposition, we encode scene geometry to model moving directions by dis-

<person, move+toward+
(home), walkway>

NN"
street

NN"
sidewalk

NN
"lawn

NN"
walkway

street sidewalk
walkwaylawn

Topological+Feature+
Aggregation

Semantic+Feature+Decomposition

Place based Feature
Descriptions

Distance based Place
Discretization

…

Figure 6.2: Framework of LIVR.
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Original
Walkway Mask Discretized Masks

Time t

Time t t/

nearmiddlefar

Zoomed Representations
on Each Part

+

(a) Place Discretization

Aggregated
Representation

Decomposed
Representations

…

(b) Topological Feature Aggregation

Figure 6.3: (a) illustrates distance-based place discretization. (b) illustrates the motivation

behind topological feature aggregation.

cretizing a place into parts based on a quantized distance transform w.r.t. another place.

Fig.6.2 (brown) shows the discretized bitmaps of walkway w.r.t. porch. As illustrated

in Fig.6.3(a), features decomposed by those discretized bitmaps capture moving agents

in spatial-temporal order, which reveals the moving direction, and can be generalized to

different scene layouts. With place-based feature descriptions, we predict the confidence

of an action by dynamically aggregating features within the place associated with that

action and adjacent places, since the actions occurring in one place may also be projected

onto adjacent places from the camera view(see Fig.6.3(b)). This topological feature ag-

gregation controls the ”on/off” state of neuron connections from place-based feature de-

scriptions to action nodes at both training and testing time based on scene topological

connectivity.

To evaluate LIVR, we collect a dataset called Agent-in-Place Action dataset, which
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consists of over 5,000 15s videos obtained from 26 different surveillance scenes with

around 7,100 actions from 15 categories. To evaluate the generalization of LIVR, we

split the scenes into observed and unseen scenes. Extensive experiments show that LIVR

significantly improves the generalizability of the model trained on only observed scenes

and tested on unseen scenes (improving the mean average precision (mAP) from around

20% to more than 51%). Consistent improvements are observed on almost all action

categories.

6.2 Related Work

Video Understanding. Our work is related to video understanding, especially video ac-

tion recognition, which takes video clips as input and categorizes the actions (usually hu-

man activities) occurring in the video. Recent work in video activity recognition explores

different frameworks, e.g.two-stream based models [89–91], RNN based models [97–99]

and 3D ConvNets based methods [78,100,101] on different datasets [93–96]. In the con-

text of home surveillance video understanding, prior work focuses on developing robust,

efficient and accurate surveillance systems that can detect, recognize and track actions

or events [102–104], or to detect abnormal events [105–107]. The most related work to

ours is ReMotENet [108], which skips expensive object detection [73, 109–111] and uti-

lizes 3D ConvNets to detect motion of an object-of-interest in outdoor home surveillance

videos. We employ a similar 3D ConvNet model as proposed in [108] as a backbone ar-

chitecture for extracting place-based feature descriptions for our model. Unlike previous

work, our agent-in-place actions are associated with places, and we focus on improving
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the generalization of a model by modeling geometrical and topological relationships in

scene layouts.

Region-based Representation. Region-based representations have been widely used in

computer vision tasks [112–124]. For example, SIFT [114] represents an image using

features extracted from blobs; spatial pyramid pooling based methods partition the im-

age into divisions and aggregate local features in them [115–121]; some methods uti-

lize high-level semantic representations extracted from objects in images or actions in

videos [112,122–126]. Li et al. [127] represented videos by learning from weak detection

bounding boxes and pooling only features related to facial regions for video face verifi-

cation. Zhao et al. [128] proposed an image representation based on pooling semantic

features of individual objects into a feature map. Our method also leverages region-based

representations, but we decompose regions based on scene layout to extract place-based

features and aggregate them according to scene topology. Our method abstracts complex

scene layouts to learn scene-independent features to generalize to unseen scenes.

Knowledge Transfer. The biggest challenge of agent-in-place action recognition is to

generalize a model trained with limited scenes to unseen scenes. Previous work on knowl-

edge transfer in both image and video domain has been based on visual similarity, which

requires a large amount of training data [129–135]. For trajectory prediction, Ballan et

al. [129] transferred the priors of statistics from training scenes to new scenes based on

scene similarity. Kitani et al. [136] extracted static scene features to learn scene-specific

motion dynamics for predicting human activities. Instead of utilizing low-level visual

similarity for knowledge transfer, our video representation abstracts away appearance
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and location variance and models geometrical and topological relationships in a scene.

6.3 Layout-Induced Video Representation

6.3.1 Framework Overview

The network architecture of the layout-induced video representation is shown in

Fig.6.4. For each video, we stack sampled frames of a video clip into a 4-D input ten-

sor. Frame differences are used as the input since they suppress the influence of scene

background and encourage the model to capture more abstract visual concepts [108]. Our

backbone network is similar to the architecture of ReMotENet [108], which is composed

of 3D Convolution (3D-conv) blocks. A key component of our framework is semantic

feature decomposition, which decomposes feature maps according to region semantics

obtained from given segmentation masks. This feature decomposition can be applied

after any 3D-conv layer. Spatial Global Max Pooling (SGMP) is applied to extracted fea-

tures within places, allowing the network to learn abstract features independent of shapes,

sizes and absolute coordinates of both places and moving agents. For predicting each ac-

tion label, we aggregate features from different places based on their connectivity in the

segmentation map, referred to as Topological Feature Aggregation.

6.3.2 Semantic Feature Decomposition

Segmentation Maps Semantic Feature Decomposition utilizes a segmentation map of

each place to decompose features and force the network to extract place-based feature

descriptions individually. The segmentation maps can be manually constructed using a
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Figure 6.4: Layout-induced Video Representation Network.

mobile app we developed to annotate each place by drawing points to construct polygons.

We believe that the human annotations are preferred when compared to automatic seman-

tic segmentation methods for our task. Because the later ones segment places based on

appearance (e.g.color, texture, etc.), while our task requires to differentiate places with

similar appearance based on their functionality. For example, walkway, street and drive-

way may confuse the appearance based methods due to their similar appearance, but they

have different functionalities in daily life, which can be easily and efficiently differen-

tiated by human. Meanwhile, considering the fact that most of the time a surveillance

camera should be fixed, users can annotate one map per camera very efficiently. The

remaining parts of this paper will assume perfect segmentation as it is reasonably easy
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to obtain. However, we will discuss the performance of our method using automatically

generated maps in Sec. 6.5.4.

Place-based Feature Descriptions (PD). Given a segmentation map, we extract place-

based feature descriptions as shown in the blue boxes in Fig.6.4. We first use the seg-

mentation map represented by a set of binary masks to decompose feature maps spa-

tially into regions, each capturing the motion occurring in a certain place. The decom-

position is applied to features instead of raw inputs to retain context information1. Let

XL ∈ RwL× hL×tL×c be the output tensor of the Lth conv block, where wL, hL, tL denote

its width, height and temporal dimensions, and c is the number of feature maps. The

place-based feature description of a place indexed with p is

fL,p(XL) = XL � I [ML = p] (6.1)

where ML ∈ IwL× hL×1 is the segmentation index map and � is a tiled element-wise

multiplication which tiles the tensors to match their dimensions. Place descriptions can be

extracted from different levels of feature maps. L = 0 means the input level; L > 0 means

after the Lth 3D-conv blocks. A higher L generally allows the 3D ConvNet to observe

more context and abstract features. We treat L as a hyper-parameter of the framework and

study its effect in Sec. 6.5.

Distance-based Place Discretization (DD). Many actions are naturally associated with

moving directions w.r.t.some scene element (e.g., the house in home surveillance). To

1An agent can be located at one place, but with part of its body projected onto another place in the view

of the camera. If we use the binary map as a hard mask at input level, then for some places such as sidewalk,

driveway and walkway, only a small part of the moving agents will remain after the masking operation.
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learn general patterns of the motion direction in different scenes, we further discretize the

place segmentation into several parts, and extract features from each part and aggregate

them to construct the place-based feature description of this place. For illustration, we

use porch as the anchor place (shown in Fig.6.5). We compute the distance between each

pixel and the porch in a scene (distance transform), and segment a place into k parts based

on their distances to porch. The left bottom map in 6.5 shows the porch distance transform

of a scene. Let DL(x) be the distance transform of a pixel location x in the Lth layer. The

value of a pixel x in the part indexing map M∆
L is computed as

M∆
L (x) =

⌊
Dmax
L (x)−Dmin

L (x)

k(DL(x)−Dmin
L (x))

⌋
(6.2)

where Dmax
L (x) = max{DL(x

′)|ML(x
′) =ML(x)} and Dmin

L (x) = min{DL(x
′)|

ML(x
′) = ML(x)} are the max and min of pixel distances in the same place. They can

be efficiently pre-computed. The feature description corresponding to the ith part of pth

place in Lth layer is

f∆
L,p,i(XL) = XL � I[ML = p ∧M∆

L = i] (6.3)

where � is the tiled element-wise multiplication.

Discretizing a place into parts at different distances to the anchor place and explic-

itly separating their spatial-temporal features allows the representation to capture moving

agents in spatial-temporal order and extract direction-related abstract features. However,

not all places need to be segmented since some places (such as sidewalk, street) are not

associated with any direction-related action (e.g.moving toward or away from the house).

For these places, we still extract the whole-place feature descriptors fL,p. We will study

the different choices of place discretization and the number of parts k in Sec. 6.5. To
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preserve temporal ordering, we apply 3D-conv blocks with spatial-only max pooling to

extract features from each discretized place, and concatenate them channel-wise. Then,

we apply 3D-conv blocks with temporal-only max pooling to abstract temporal informa-

tion. Finally, we obtain a 1-D place-based feature description after applying GMP (see

Fig.6.5). It is worth noting that the final description obtained after distance-based place

discretization has the same dimensions as non-discretized place descriptions.

6.3.3 Topological Feature Aggregation (Topo-Agg)

Semantic feature decomposition allows us to extract a feature description for each

place individually. In order to predict action labels, these place features need to be ag-

gregated. Each action is one-one mapped to a place. To predict the confidence of an

action a occurring in a place p, features extracted far from place p are distractors. To

reduce interference by features from irrelevant places, we structure the network to ignore

these far away features using Topological Feature Aggregation, which utilizes the spatial

connectivity between places, to guide feature aggregation.
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feature descriptions and the prediction labels.

Specifically, as shown in Fig.6.6, given a scene segmentation map, a source place p

and a constant h, we employ a Connected Component algorithm to find the h-connected

set Ch(p) which contains all places connected to place p within h hops. The constant h

specifies the minimum number of steps to walk from the source to a destination place.

Given the h-connected place set Ch, we construct a binary action-place matrix (T ∈

Rna×np) for the scene where na is the number of possible actions and np is the number of

places. Ti,j = 1 if and only if place j is in the Ch of the place corresponding to action

i. Fig.6.6 shows an example segmentation map with its action-place mapping, where

C0(porch) = {porch}, C1(porch) = {porch, walkway, driveway, lawn}, C2(porch)

includes all except for street, and C3(porch) covers all six places.

We implement topological feature aggregation at both training and testing using a

gated fully connected layer with customized connections determined by the action-place
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mapping T. Given np m-D features extracted from np places, we concatenate them to

form a (np × m)-D feature vector. We use T to determine the ”on/off” status of each

connection of a layer between the input features and the output action confidences. Let

T∗ = T⊗ I1×m be the actual mask applied to the weight matrix W ∈ Rna×npm where ⊗

is the matrix Kronecker product. The final output is computed by y = (W�T∗)f∗, where

� is element-wise matrix multiplication, f∗ is the concatenated feature vector as the input

of the layer. We omit bias for simplicity. Let J be the training loss function (cross-entropy

loss), considering the derivative of W, the gradient formulation is∇WJ = (∇yJf
ᵀ
∗ )�T∗,

which is exactly the usual gradient (∇sJf
T ) masked by T∗. At training time, we only

back-propagate the gradients to connected neurons. We also experiment with multiple

fully connected layers, discussed in Sec. 6.5.

6.4 Agent-in-Place Action Dataset

We introduce a surveillance video dataset for recognizing agent-in-place actions.

We collected outdoor home surveillance videos from internal donors and webcams2 for

months to obtain over 7, 100 actions from around 5, 000 15-second video clips with 1280×

720 resolution. These videos are captured from 26 different outdoor cameras which cover

various layouts of typical American families’ front yards and back yards.

We select 15 common agent-in-place actions to label and each is represented as a

tuple containing an action, the agent performing it, and the place where it occurs. The

agents, actions, and places involved in our dataset are: Agent = {person, vehicle, pet};
2http://www.nestcamdirectory.com/
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Action = {move along, stay, move away (home), move toward (home), interact with

vehicle, move across}; Place = {street, sidewalk, lawn, porch, walkway, driveway}.

The duration of each video clip is 15s, so multiple actions can be observed from a

single agent or multiple agents in one video. We formulate action recognition as a multi-

label classification task. We split the 26 cameras into two sets: observed scenes (5) and

unseen scenes (21) to balance the number of instances of each action in observed and

unseen scenes and at the same time cover more scenes in the unseen set. We train and

validate our model on observed scenes, and test its generalization capability on the unseen

scenes. The detailed statistics of our cleaned dataset is shown in Fig. 6.7.
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Figure 6.7: Dataset Statistics on observed and unseen scenes.

6.5 Experiments

6.5.1 Implementation Details

Network Architecture. Unlike traditional 3D ConvNets which conduct spatial-

temporal max-pooling simultaneously, we found that decoupling the pooling into spatial-

only and temporal-only leads to better performance. So, for each place-specific network

that extracts place-based feature descriptions, we utilize nine blocks of 3D ConvNets

with the first five blocks using spatial-only max pooling and the last four blocks using
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temporal-only max pooling. The first two blocks have one 3D-conv layer each, and there

are two convolutional (conv) layers with ReLU in between for the remaining blocks. For

each place-specific network, we use 64 3 × 3 × 3 conv filters per 3D-conv layer. After

conducting SGMP on features extracted by each place-specific network, the final con-

catenated 1-D feature dimension is 6× 64 since there are 6 places in total. The inference

is conducted with a gated fully connected layer, whose connections (”on/off” status) are

determined by action labels and scene topology. We use the sigmoid function to obtain

the predicted probability of each action. It is worth noting that if we conduct feature level

decomposition (L > 0), we use a shared network to extract low-level features.

Anchor Place. For our dataset, the directions mentioned are all relative to the

house location, and porch is a strong indicator of the house location. So we only conduct

distance transform to porch3, but the distance-based place discretization method can be

easily generalized to represent moving direction w.r.t any arbitrary anchor place.

Training and Testing Details. Our action recognition task is formulated as multi-

label classification without mutual exclusion. The network is trained using the Adam

optimizer [82] with 0.001 initial learning rate. For input video frames, we follow [108]

to use FPS 1 and down-sample each frame to 160 × 90 to construct a 15 × 160 × 90 ×

3 tensor for each video as input. Suggested by [108], small FPS and low resolution

are sufficient to model actions for home surveillance where most agents are large and

the motion patterns of actions are relatively simple. We evaluate the performance of

recognizing each action independently and report Average Precision (AP) for each action

3If there is no porch in a scene, we let the user to draw a line (click to generate two endpoints) to indicate

its location
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and mean Average Precision (mAP) over all categories.

Hyperparameter Selection. We split the 26 scenes into two sets: observed scenes

and unseen scenes. We further split the videos in observed scenes into training and vali-

dation sets with a sample ratio of nearly 1 : 1. We train our model on observed scenes and

test it on unseen scenes. The validation set is used for tuning hyperparameters: we decom-

pose semantics after the second conv blocks (L = 2); we conduct distance-based place

discretization on PLDT = {walkway, driveway, lawn} and choose k = 3; for topological

feature aggregation, we choose h = 1.

6.5.2 Baseline Models

We follow [108] to employ 3D ConvNets as our baseline (B/L) model. All three

baseline models share the same 3D ConvNets architecture, which is very similar to the ar-

chitectures of each place-specific network that extracts place-based feature descriptions,

except that the last layer is fully connected instead of gated through topological feature

aggregation. The difference among baseline 1, 2 and 3 is their input: B/L1 takes the raw

frames as input; B/L2 applies frame difference on two consecutive frames; B/L3 incor-

porates the scene layout information by directly concatenating the 6 segmentation maps

to the RGB channels in each frame (we call this method ConcateMap), resulting in an

input of 9 channels per frame in total. We train the baseline models using the same set-

ting as in the proposed model, and the performance of the baselines are shown in column

2-5 in Table 6.1. We observe that: 1) adding frame differencing leads to significant per-

formance improvements; 2) marginal improvements are obtained by incorporating scene

layout information using ConcateMap; 3) the testing performance gap between observed
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and unseen scenes is large, which reveals the poor generalization of the baseline mod-

els. In addition, we also train a B/L3 model with 6× more filters per layer to evaluate

whether model size is the key factor for the performance improvement. The result of this

enlarged B/L3 model is shown in column 5 of Table 6.1. Overall, the baseline models

which directly extract features jointly from the entire video suffer from overfitting, and

simply enlarging the model size or directly using the segmentation maps as features does

not improve their generalization.

Network Architecture B/L1 B/L2 B/L3
B/L3

+MF

Ours-

V1

Ours-

V2

Ours-

V3

Ours-

V4

Ours-

V4+H

Ours-

V4+MF

Ours-

V4+FPS2

TSN

[137]

ReMotENet

[108]

3D ConvNet? X X X X X X X X X X X - -

frame differencing? X X X X X X X X X X - -

ConcateMap? X X - -

place-based feature description? X X X X X X X - -

distance-based place discretization? X X X X X - -

topological feature aggregation? X X X X X - -

higher resolutions? X - -

more filters? X X - -

higher FPS? X - -

Observed scenes mAP 43.34 51.79 53.54 52.02 60.17 60.97 57.64 56.71 56.26 56.01 58.93 57.41 53.17

Unseen scenes mAP 14.62 18.46 20.96 16.12 41.54 44.73 46.57 51.41 49.13 51.87 50.31 23.26 21.13

Table 6.1: The path from traditional 3D ConvNets to our methods.

6.5.3 Evaluation on the Proposed Method

The path from traditional 3D ConvNets to our method. We show the path from

the baselines to our method in Table 6.1. In column 6-9, we report the mAP of our

models on observed scene validation set and unseen scene testing set. We observe three

significant performance gaps, especially on unseen scenes: 1) from B/L3 to Ours-V1, we

obtain over 20% mAP improvement by applying the proposed semantic feature decom-

104



0

0.2

0.4

0.6

0.8

1

B/L3 PD+FC-­‐Agg PD+Topo-­‐Agg PD+DD+Topo-­‐Agg

Figure 6.8: Per-category average precision of the baseline 3 and our methods on unseen

scenes.

position to extract place feature descriptions; 2) from Ours-V1 to Ours-V3, our model

is further improved by explicitly modeling moving directions by place discretization; 3)

when compared to using a fully connected layer for feature aggregation (V1 and V3), our

topological method (V2 and V4) leads to another significant improvement, which shows

the efficacy of feature aggregation based on scene layout connectivity. We also evaluate

the effect of resolutions, FPS and number of filters using our best model (Ours-V4). Dou-

bling the resolution (320×180), FPS (2) and number of filters (128) only results in a slight

change of the model’s accuracy (columns 10-12 in Table 6.1). Besides our baselines, we

also apply other state-of-the-art video action recognition methods (TSN [137] and Re-

MotENet [108]) on our dataset. LIVR outperforms them by a large margin, especially on

the unseen scenes.

Per-category Performance. Fig.6.8 shows the average precision for each action on un-

seen scenes. Our method outperforms the baseline methods by a large margin on almost

all action categories. When comparing the orange and green bars in Fig.6.8, we observe

that the proposed topological feature aggregation (Topo-Agg) leads to consistently bet-

ter generalization for almost all actions. The blue dashed box highlights the actions that
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include moving directions, and consistent improvements are brought by distance-based

place discretization (DD). For some actions, especially the ones occurring on street and

sidewalk, since they are relatively easy to recognize, adding DD or Topo-Agg upon the

place-based feature descriptions (PD) does not help much. Overall, our layout-induced

video representation improves the generalization capability of the network, especially for

actions that are more challenging, and are associated with moving directions.

Qualitative Results. Some example actions are visualized using three frames in temporal

order and the predicted probabilities of the groundtruth actions using different methods

are reported in Fig.6.9. It is observed that for relatively easy actions such as ¡vehicle,

move along, street¿, performance is similar across approaches. However, for challenging

actions, especially ones requiring modeling moving directions such as ¡person, move

toward (home), walkway¿, our method outperforms baselines significantly.

6.5.4 Ablation Analysis on Unseen Scenes

Place-based Feature Description. The hyper-parameter for PD is the level L, controlling

when to decompose semantics in different places. Fig.6.10(a) and 6.10(c) show that the

generalization capability of our model is improved when we allow the network observe

the entire video at input level, and decompose semantics at feature level (after the 2nd

conv blocks). However, if we extract place descriptions after a very late block (e.g.level

4 or 5), it fails to improve the model generalizability.

Distance-based Place Discretization. We study different strategies for determining PLDT

and the number of parts to discretize (k) per place. From our observations, including the
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Figure 6.9: Qualitative examples: The predicted confidences of groundtruth actions using

different methods. We use 3 frames to visualize a motion and orange ellipses to highlight

moving agents.

0.2

0.3

0.4

0.5

L=0 L=1 L=2 L=3 L=4 L=5

m
AP

:U
ns
ee
n
Sc
en

es

Decomposition Level

B/L3 PD+FC-­‐Agg
PD+Topo-­‐Agg PD+DD+FC-­‐Agg
PD+DD+Topo-­‐Agg

(a) Decomposition

Level L

0.44

0.46

0.48

0.5

0.52

PD	
  
w/o	
  
DD

DD:	
  
C2	
  +	
  
C3	
  
(k=3)

DD:	
  
C2	
  
(k=3)

DD:	
  
C2	
  	
  	
  	
  	
  

(k	
  =	
  2)

DD:	
  
C2	
  	
  	
  	
  	
  

(k	
  =	
  4)

DD:	
  
C2	
  	
  	
  	
  	
  

(k	
  =	
  5)

m
AP

:U
ns
ee
n
Sc
en

es

(b) Place Discretization

0.2

0.3

0.4

0.5

L=0 L=1 L=2 L=3 L=4 L=5m
AP

:U
ns
ee
n
Sc
en

es

Decomposition Level

(c) Topological Aggre-

gation

0

10

20

30

40

50

PD PD+DD PD+DD+Topo	
  
Agg

B/L	
  3

GT Auto

(d) Segmentation: GT

v.s. Auto

Figure 6.10: Ablation Study of LIVR.

anchor place–porch, the six places in our dataset can be clustered into three categories

with regard to the distance to camera: C1 includes only porch, which is usually the clos-

est place to camera; C2 includes lawn, walkway, driveway, and actions occurring in those

places usually require modeling the moving direction directly; C3 includes sidewalk and
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street, which are usually far away from the house, and actions on them are not sensitive

to directions (e.g.”move along”). We evaluate our method with two strategies to apply

DD on: 1) all places belong to C2 and C3; 2) only places in C2. The results are shown

in Fig.6.10(b). We observe that applying DD on C3 dose not help much, but if we only

apply DD on places in C2, our method achieves the best performance. In terms of the

number of discretized parts k, we evaluate k from 2 to 5 and observe from Fig.6.10(b)

that the performance is robust when k > 3.

Topological Feature Aggregation. We evaluate different h values to determine the h-

connected set and different strategies to construct and utilize the action-place mapping T.

The results are shown in Fig.6.10(c). We observe that Topo-Agg achieves its best per-

formance when h = 1, i.e.for an action occurring in place P , we aggregate features ex-

tracted from place P and its directly connected places. In addition, we compare Topo-Agg

to the naive fully connected inference layer (FC-Agg: 1 layer) and two fully-connected

layers with 384 neurons each and a ReLU layer in between (FC-Agg: 2 layers). Un-

surprisingly, we observe that the generalizability drops significantly with an extra fully-

connected layer, which reflects overfitting. Our Topo-Agg outperforms both methods.

We also conduct an experiment where we train a fully connected inference layer and only

aggregate features based on topology at testing time (“Topo-Agg: 1-hop test only”) and it

shows worse performance.

LIVR with Automatically Generated Segmentation Maps. Although we believe it is

desired to use human annotations to obtain segmentation maps, we developed an algo-

rithm to automatically generate the segmentation maps to evaluate LIVR. As shown in
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Fig.6.11, we first apply normalized cut [138] on the camera images to obtain super pix-

els (Fig.6.11 (b))4. Then, to further differentiate different places with similar appearance

(e.g.walkway and street), we developed an algorithm to utilize the historical statistics

obtained from previous videos (Fig.6.11 (d)) of a scene to generate heatmaps of some

specific places5 (Fig.6.11 (e)). Then, the two results are combined to obtain final seg-

mentation maps ((Fig.6.11 (c))). Our method can generate reasonably good segmentation

maps when compared to the groundtruth maps obtained manually (6.11 (f))). We evalu-

ate LIVR using the imperfect maps and observe some performance degradation (around

10%), but LIVR still outperforms the baselines by a large margin (around 20%), which

demonstrate the effectiveness of our method even if the segmentation maps are imperfect.

We will leave the problem of automatically generating high-quality segmentation maps in

home surveillance as a future work.

6.6 Conclusions and Future Directions

To improve the generalization of a deep network that learns from limited training

scenes, we propose a layout-induced video representation which abstracts away low-level

appearance variance but encodes the semantics, geometry and topology of scene layout.

There are two possible directions of interesting future work: first, in this paper we focus

4We also tried deep learning based methods trained on segmentation datasets, but they perform poorly

on our camera images.
5We utilize the patterns of moving objects to differentiate places. For example, street is a place where

vehicles move along on it with limited scale changes (from the camera perspective), and walkway is a place

where people with notably large scale changes walk along.
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Figure 6.11: Process of Automatically Generating Segmentation Maps.

on manually annotated maps, but we may integrate the estimation of the semantic maps

into the network architecture, which may require collecting more scenes for training.

Second, we may extend the task from action classification with a closed action set to

a more flexible compositional and structural prediction of arbitrary agents, places and

actions and associate them to form agent-in-place actions, including zero-shot actions

consisting of observed agents, places and actions.
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Chapter 7: Conclusion

We investigated ways to improve the efficiency and generalization of visual recog-

nition in five different works. These works are motivated by real world applications such

as image classification, visual relationships detection, object detection, motion detection

and action recognition. The works also study the fundamental redundancy of deep neu-

ron networks, the way to incorporate statistical prior in an end-to-end learning frame-

work, selective context modeling for object detection, spatial-temporal attention in an

efficient motion detection pipeline and how to incorporate semantic segmentation into

action recognition task respectively.

We show in our works that (1) to better reduce the redundancy of a deep neural net-

work, we can estimate the neuron importance globally in a back propagation fashion. (2)

to improve model generalization, besides collecting more data, we can utilize common

sense and statistical prior of knowledge to help regularize the learning process of deep

network. (3) Context is helpful in visual recognition task, but not all of them are infor-

mative. (4) Efficient 3D ConvNets can be used to speed up motion or action recognition

in videos, and to improve the model’s generalization capabilities on unseen scenes, we

could incorporate scene layout information into an end-to-end neuron network.

Although we have witnessed the great improvement brought by deep network in
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computer vision tasks, there are still many problems remaining unsolved for building

efficient and general enough solutions. Interesting future direction may include under-

standing the structural properties of neuron network to further develop more efficient but

still powerful network architectures; improving generalization of network by incorporat-

ing more knowledge or common sense into network training and inference; reduce the

amount of annotated training data by weakly/self-supervised learning methods.
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[36] Máté Pataki, Miklós Vajna, and Attila Csaba Marosi. Wikipedia as text. ECRIM
News, Special theme: Big Data:48 – 48, 04/2012 2012.

[37] Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-Fei, and Christopher D.
Manning. Generating semantically precise scene graphs from textual descriptions
for improved image retrieval. In ACL Workshop on Vision and Language (VL15),
Lisbon, Portugal, September 2015.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[39] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Modeling context be-
tween objects for referring expression understanding. In European Conference on
Computer Vision (ECCV), 2016.

[40] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[41] Bryan A. Plummer, Arun Mallya, Christopher M. Cervantes, Julia Hockenmaier,
and Svetlana Lazebnik. Phrase localization and visual relationship detection with
comprehensive linguistic cues. CoRR, abs/1611.06641, 2016.

[42] Mohammad Amin Sadeghi and Ali Farhadi. Recognition using visual phrases.
2011.

[43] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 580–587, 2014.

[44] Yikang Li, Wanli Ouyang, and Xiaogang Wang. ViP-CNN: A Visual Phrase Rea-
soning Convolutional Neural Network for Visual Relationship Detection, February
2017.

[45] Xiaodan Liang, Lisa Lee, and Eric P. Xing. Deep Variation-structured Reinforce-
ment Learning for Visual Relationship and Attribute Detection, March 2017.

[46] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[47] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee,
Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object
detection and semantic segmentation in the wild. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2014.

116



[48] Santosh Kumar Divvala, Derek Hoiem, James Hays, Alexei A. Efros, and Martial
Hebert. An empirical study of context in object detection. In CVPR, pages 1271–
1278. IEEE Computer Society, 2009.

[49] Kevin P Murphy, Antonio Torralba, and William T. Freeman. Using the forest to
see the trees: A graphical model relating features, objects, and scenes. In S. Thrun,
L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16, pages 1499–1506. MIT Press, 2004.

[50] Carolina Galleguillos, Andrew Rabinovich, and Serge Belongie. Object catego-
rization using co-occurrence, location and appearance. In IEEE Conference on
Computer Vision and Pattern Recognition, June 2008.

[51] Xi Chen, He He, and Larry S Davis. Object detection in 20 questions. In Ap-
plications of Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE,
2016.

[52] Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic scene understanding for
3d object detection with rgbd cameras. In The IEEE International Conference on
Computer Vision (ICCV), December 2013.

[53] Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole: Joint
object detection, scene classification and semantic segmentation. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
June 16-21, 2012, pages 702–709, 2012.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[55] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[56] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013.

[57] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[58] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[59] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation for
supervision transfer. CoRR, abs/1507.00448, 2015.

117



[60] Wenqing Chu and Deng Cai. Deep feature based contextual model for object de-
tectionn. CoRR, abs/1604.04048, 2016.

[61] Jianan Li, Yunchao Wei, Xiaodan Liang, Jian Dong, Tingfa Xu, Jiashi Feng, and
Shuicheng Yan. Attentive contexts for object detection. CoRR, abs/1603.07415,
2016.

[62] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. SUN RGB-D: A RGB-
D scene understanding benchmark suite. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[63] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE Trans.
Pattern Anal. Mach. Intell., 32(9):1627–1645, September 2010.

[64] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
Support vector machine learning for interdependent and structured output spaces.
In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, New York, NY, USA, 2004. ACM.

[65] Matthew Ginsberg. Multivalued logics: A uniform approach to inference in artifi-
cial intelligence. Computational Intelligence, 4:265–316, 1988.

[66] V.D. Shet, J. Neumann, V. Ramesh, and L.S. Davis. Bilattice-based logical reason-
ing for human detection. Computer Vision and Pattern Recognition, 2007, pages
1–8, June 2007.

[67] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmen-
tation and support inference from rgbd images. In ECCV, 2012.

[68] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario Fritz,
Kate Saenko, and Trevor Darrell. A category-level 3-d object dataset: Putting the
kinect to work. In 1st Workshop on Consumer Depth Cameras for Computer Vision
(ICCV workshop), November 2011.

[69] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. SUN3D: A database of big
spaces reconstructed using SfM and object labels. In ICCV, 2013.

[70] Saurabh Gupta, Ross B. Girshick, Pablo Arbelaez, and Jitendra Malik. Learning
rich features from RGB-D images for object detection and segmentation. CoRR,
abs/1407.5736, 2014.

[71] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar. Cdnet
2014: An expanded change detection benchmark dataset. In Proc. IEEE Workshop
on Change Detection (CDW-2014) at CVPR-2014, pages 387–394, 2014.

[72] Andrews Sobral and Thierry Bouwmans. Bgs library: A library framework for
algorithm?s evaluation in foreground/background segmentation. In Background
Modeling and Foreground Detection for Video Surveillance. CRC Press, Taylor
and Francis Group., 2014.

118



[73] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[74] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector.
CoRR, abs/1512.02325, 2015.

[75] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[76] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242, 2016.

[77] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and
Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object detec-
tors. CoRR, abs/1611.10012, 2016.

[78] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. C3D: generic features for video analysis. CoRR, abs/1412.0767, 2014.

[79] Mahmudul Hasan and Amit K Roy-Chowdhury. Context aware active learning of
activity recognition models. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4543–4551, 2015.

[80] Minsi Wang, Bingbing Ni, and Xiaokang Yang. Recurrent modeling of interaction
context for collective activity recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[81] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[82] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[83] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple
online and realtime tracking. In 2016 IEEE International Conference on Image
Processing (ICIP), pages 3464–3468, 2016.

[84] Zoran Zivkovic. Improved adaptive gaussian mixture model for background sub-
traction. ICPR ’04, pages 28–31, Washington, DC, USA, 2004. IEEE Computer
Society.

[85] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015.

119



[86] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[87] Cewu Lu, Ranjay Krishna, Michael S. Bernstein, and Fei-Fei Li. Visual relation-
ship detection with language priors. CoRR, abs/1608.00187, 2016.

[88] Bichen Wu, Forrest Iandola, Peter H. Jin, and Kurt Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object detection
for autonomous driving. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

[89] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-
stream network fusion for video action recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 1933–1941, 2016.

[90] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, pages 568–576,
Cambridge, MA, USA, 2014. MIT Press.

[91] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Val Gool. Temporal segment networks: Towards good practices for deep action
recognition. In ECCV, 2016.

[92] C. Xu and J. J. Corso. Actor-action semantic segmentation with grouping-process
models. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[93] H. Kuhne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video
database for human motion recognition. In IEEE International Conference on
Computer Vision (ICCV), 2011.

[94] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild. CoRR, abs/1212.0402, 2012.

[95] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Su-
leyman, and Andrew Zisserman. The kinetics human action video dataset. CoRR,
abs/1705.06950, 2017.

[96] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles.
Activitynet: A large-scale video benchmark for human activity understanding. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

120



[97] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Trevor Darrell, and Kate Saenko. Long-term recurrent con-
volutional networks for visual recognition and description. In CVPR, pages 2625–
2634. IEEE Computer Society, 2015.

[98] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-
works for video classification. In CVPR, pages 4694–4702. IEEE Computer Soci-
ety, 2015.

[99] Chih-Yao Ma, Min-Hung Chen, Zsolt Kira, and Ghassan AlRegib. TS-LSTM and
temporal-inception: Exploiting spatiotemporal dynamics for activity recognition.
CoRR, abs/1703.10667, 2017.

[100] Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolu-
tional learning of spatio-temporal features. In Proceedings of the 11th European
Conference on Computer Vision: Part VI, ECCV’10, pages 140–153, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[101] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):221–
231, January 2013.

[102] Ismail Haritaoglu, David Harwood, and Larry S. Davis. W4: Real-time surveil-
lance of people and their activities. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:809–830, 2000.
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