209 research outputs found

    A tutorial on the characterisation and modelling of low layer functional splits for flexible radio access networks in 5G and beyond

    Get PDF
    The centralization of baseband (BB) functions in a radio access network (RAN) towards data processing centres is receiving increasing interest as it enables the exploitation of resource pooling and statistical multiplexing gains among multiple cells, facilitates the introduction of collaborative techniques for different functions (e.g., interference coordination), and more efficiently handles the complex requirements of advanced features of the fifth generation (5G) new radio (NR) physical layer, such as the use of massive multiple input multiple output (MIMO). However, deciding the functional split (i.e., which BB functions are kept close to the radio units and which BB functions are centralized) embraces a trade-off between the centralization benefits and the fronthaul costs for carrying data between distributed antennas and data processing centres. Substantial research efforts have been made in standardization fora, research projects and studies to resolve this trade-off, which becomes more complicated when the choice of functional splits is dynamically achieved depending on the current conditions in the RAN. This paper presents a comprehensive tutorial on the characterisation, modelling and assessment of functional splits in a flexible RAN to establish a solid basis for the future development of algorithmic solutions of dynamic functional split optimisation in 5G and beyond systems. First, the paper explores the functional split approaches considered by different industrial fora, analysing their equivalences and differences in terminology. Second, the paper presents a harmonized analysis of the different BB functions at the physical layer and associated algorithmic solutions presented in the literature, assessing both the computational complexity and the associated performance. Based on this analysis, the paper presents a model for assessing the computational requirements and fronthaul bandwidth requirements of different functional splits. Last, the model is used to derive illustrative results that identify the major trade-offs that arise when selecting a functional split and the key elements that impact the requirements.This work has been partially funded by Huawei Technologies. Work by X. Gelabert and B. Klaiqi is partially funded by the European Union's Horizon Europe research and innovation programme (HORIZON-MSCA-2021-DN-0) under the Marie Skłodowska-Curie grant agreement No 101073265. Work by J. Perez-Romero and O. Sallent is also partially funded by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under Grant Agreements No. 101096034 (VERGE project) and No. 101097083 (BeGREEN project) and by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under ARTIST project (ref. PID2020-115104RB-I00). This last project has also funded the work by D. Campoy.Peer ReviewedPostprint (author's final draft

    A Study on Three Dimensional Spatial Scattering Modulation Systems

    Get PDF
    With an explosive growth of data traffic demand, the researchers of the mobile communication era forecast that the traffic volume will have a 1000x increase in the forthcoming beyond fifth generation (B5G) network. To satisfy the growing traffic demand, the three-dimensional (3-D) multiple-input-and-multiple-output (MIMO) system is considered as a key technology to enhance spectrum efficiency (SE), which explores degrees of freedom in both the vertical and the horizontal dimensions. Combined with 3-D MIMO technology, index modulation (IM) is proposed to improve both energy efficiency (EE) and SE in the B5G era. Existing IM technologies can be categorized according to the domain in which the additional IM bits are modulated, e.g., the spatial-domain IM, the frequency-domain IM and the beamspace-domain IM etc. As one of the mainstream IM techniques, spatial scattering modulation (SSM) is proposed, which works in the beamspace-domain. For SSM systems, the information bits are denoted by the distinguishable signal scattering paths and the modulated symbols. Therein, two information bit streams are transmitted simultaneously by selections of modulated symbols and scattering paths. However, the existing papers only discuss two-dimensional (2-D) SSM systems. The 2-D SSM system applies linear antenna arrays, which only take the azimuth angles to recognise the direction of scattering paths. Therefore, to take the full advantage of the beamspace-domain resources, this thesis mainly focuses on the 3-D SSM system design and the performance evaluation. Firstly, a novel 3-D SSM system is designed. For the 3-D SSM system, besides the azimuth angles of arrival (AoA) and angles of departure (AoD), the elevation AoA and AoD are considered. Then the optimum detection algorithm is obtained, and the closed-form union upper bound expression on average bit error probability (ABEP) is derived. Moreover, the system performance is evaluated under a typical indoor environment. Numerical results indicate that the novel 3-D SSM system outperforms the conventional 2-D SSM system, which reduces the ABEP by 10 times with the same signal-to-noise ratio (SNR) level under the typical indoor environment. Secondly, for the system equipped with large-scale antenna arrays, hybrid beamforming schemes with several RF-chains have attracted more attention. To further explore the throughput of the 3-D SSM system, a generalised 3-D SSM system is proposed, which generates several RF-chains in a transmission time slot to convey modulated symbols. A system model of generalised 3-D SSM is proposed at first. Then an optimum detection algorithm is designed. Meanwhile, a closed-form expression of the ABEP is also derived and validated by Monte-Carlo simulation. For the performance evaluation, three stochastic propagation environments with randomly distributed scatterers are adopted. The results reveal that the generalised 3-D SSM system has better ABEP performance compared with the system with a single RF-chain. Considering different propagation environments, the SSM system has better ABEP performance under the statical propagation environments than the stochastic propagation environments. Thirdly, to reduce the hardware and computational complexities, two optimisation schemes are proposed for the generalised 3-D SSM systems. The 2-D fast Fourier transform (FFT) based transceivers are designed to improve the hardware friendliness, which replace the analogue phase shift networks by the multi-bit phase shifter networks. To reduce the computational complexity of the optimum detection algorithm, a low-complexity detection scheme is designed based on the linear minimum mean square error (MMSE) algorithm. Meanwhile, to quickly evaluate, the asymptotic ABEP performance and the diversity gain of the generalised 3-D SSM system are obtained

    Signal Processing Techniques for 6G

    Get PDF

    A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal Processing, and Applications

    Full text link
    Extremely large-scale multiple-input-multiple-output (XL-MIMO), which offers vast spatial degrees of freedom, has emerged as a potentially pivotal enabling technology for the sixth generation (6G) of wireless mobile networks. With its growing significance, both opportunities and challenges are concurrently manifesting. This paper presents a comprehensive survey of research on XL-MIMO wireless systems. In particular, we introduce four XL-MIMO hardware architectures: uniform linear array (ULA)-based XL-MIMO, uniform planar array (UPA)-based XL-MIMO utilizing either patch antennas or point antennas, and continuous aperture (CAP)-based XL-MIMO. We comprehensively analyze and discuss their characteristics and interrelationships. Following this, we examine exact and approximate near-field channel models for XL-MIMO. Given the distinct electromagnetic properties of near-field communications, we present a range of channel models to demonstrate the benefits of XL-MIMO. We further motivate and discuss low-complexity signal processing schemes to promote the practical implementation of XL-MIMO. Furthermore, we explore the interplay between XL-MIMO and other emergent 6G technologies. Finally, we outline several compelling research directions for future XL-MIMO wireless communication systems.Comment: 38 pages, 10 figure

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table
    • …
    corecore