12,123 research outputs found

    Secure Compute-and-Forward in a Bidirectional Relay

    Full text link
    We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple access (MAC) channel, and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message; and strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain "goodness" properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multi-hop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.Comment: v1 is a much expanded and updated version of arXiv:1204.6350; v2 is a minor revision to fix some notational issues; v3 is a much expanded and updated version of v2, and contains results on both perfect secrecy and strong secrecy; v3 is a revised manuscript submitted to the IEEE Transactions on Information Theory in April 201

    A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources

    Full text link
    In this article, we study the problem of secret key generation in the multiterminal source model, where the terminals have access to correlated Gaussian sources. We assume that the sources form a Markov chain on a tree. We give a nested lattice-based key generation scheme whose computational complexity is polynomial in the number, N , of independent and identically distributed samples observed by each source. We also compute the achievable secret key rate and give a class of examples where our scheme is optimal in the fine quantization limit. However, we also give examples that show that our scheme is not always optimal in the limit of fine quantization.Comment: 10 pages, 3 figures. A 5-page version of this article has been submitted to the 2016 IEEE International Symposium on Information Theory (ISIT

    Distributed Structure: Joint Expurgation for the Multiple-Access Channel

    Full text link
    In this work we show how an improved lower bound to the error exponent of the memoryless multiple-access (MAC) channel is attained via the use of linear codes, thus demonstrating that structure can be beneficial even in cases where there is no capacity gain. We show that if the MAC channel is modulo-additive, then any error probability, and hence any error exponent, achievable by a linear code for the corresponding single-user channel, is also achievable for the MAC channel. Specifically, for an alphabet of prime cardinality, where linear codes achieve the best known exponents in the single-user setting and the optimal exponent above the critical rate, this performance carries over to the MAC setting. At least at low rates, where expurgation is needed, our approach strictly improves performance over previous results, where expurgation was used at most for one of the users. Even when the MAC channel is not additive, it may be transformed into such a channel. While the transformation is lossy, we show that the distributed structure gain in some "nearly additive" cases outweighs the loss, and thus the error exponent can improve upon the best known error exponent for these cases as well. Finally we apply a similar approach to the Gaussian MAC channel. We obtain an improvement over the best known achievable exponent, given by Gallager, for certain rate pairs, using lattice codes which satisfy a nesting condition.Comment: Submitted to the IEEE Trans. Info. Theor

    Lattices from Codes for Harnessing Interference: An Overview and Generalizations

    Full text link
    In this paper, using compute-and-forward as an example, we provide an overview of constructions of lattices from codes that possess the right algebraic structures for harnessing interference. This includes Construction A, Construction D, and Construction πA\pi_A (previously called product construction) recently proposed by the authors. We then discuss two generalizations where the first one is a general construction of lattices named Construction πD\pi_D subsuming the above three constructions as special cases and the second one is to go beyond principal ideal domains and build lattices over algebraic integers

    The Anisotropic Wilson Gauge Action

    Get PDF
    Anisotropic lattices, with a temporal lattice spacing smaller than the spatial one, allow precision Monte Carlo calculations of problems that are difficult to study otherwise: heavy quarks, glueballs, hybrids, and high temperature thermodynamics, for example. We here perform the first step required for such studies with the (quenched) Wilson gauge action, namely, the determination of the renormalized anisotropy ξ\xi as a function of the bare anisotropy ξ0\xi_0 and the coupling. By, essentially, comparing the finite-volume heavy quark potential where the quarks are separated along a spatial direction with that where they are separated along the time direction, we determine the relation between ξ\xi and ξ0\xi_0 to a fraction of 1% for weak and to 1% for strong coupling. We present a simple parameterization of this relation for 1ξ61\leq \xi \leq 6 and 5.5β5.5 \leq \beta \leq \infty, which incorporates the known one-loop result and reproduces our non-perturbative determinations within errors. Besides solving the problem of how to choose the bare anisotropies if one wants to take the continuum limit at fixed renormalized anisotropy, this parameterization also yields accurate estimates of the derivative ξ0/ξ\partial\xi_0/\partial\xi needed in thermodynamic studies.Comment: 24 pages, LaTeX, 15 ps figures (added high statistics simulations confirming our results; to appear in Nucl. Phys. B

    Integer-Forcing Source Coding

    Full text link
    Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-complexity scheme, IF source coding, for distributed lossy compression of correlated Gaussian sources under a minimum mean squared error distortion measure. All encoders use the same nested lattice codebook. Each encoder quantizes its observation using the fine lattice as a quantizer and reduces the result modulo the coarse lattice, which plays the role of binning. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. In general, the linear combinations have smaller average powers than the original signals. This allows to increase the density of the coarse lattice, which in turn translates to smaller compression rates. We also propose and analyze a one-shot version of IF source coding, that is simple enough to potentially lead to a new design principle for analog-to-digital converters that can exploit spatial correlations between the sampled signals.Comment: Submitted to IEEE Transactions on Information Theor
    corecore