654 research outputs found

    Lattices that Admit Logarithmic Worst-Case to Average-Case Connection Factors

    Get PDF
    We demonstrate an \emph{average-case} problem which is as hard as finding γ(n)\gamma(n)-approximate shortest vectors in certain nn-dimensional lattices in the \emph{worst case}, where γ(n)=O(logn)\gamma(n) = O(\sqrt{\log n}). The previously best known factor for any class of lattices was γ(n)=O~(n)\gamma(n) = \tilde{O}(n). To obtain our results, we focus on families of lattices having special algebraic structure. Specifically, we consider lattices that correspond to \emph{ideals} in the ring of integers of an algebraic number field. The worst-case assumption we rely on is that in some p\ell_p length, it is hard to find approximate shortest vectors in these lattices, under an appropriate form of preprocessing of the number field. Our results build upon prior works by Micciancio (FOCS 2002), Peikert and Rosen (TCC 2006), and Lyubashevsky and Micciancio (ICALP 2006). For the connection factors γ(n)\gamma(n) we achieve, the corresponding \emph{decisional} promise problems on ideal lattices are \emph{not} known to be NP-hard; in fact, they are in P. However, the \emph{search} approximation problems still appear to be very hard. Indeed, ideal lattices are well-studied objects in computational number theory, and the best known algorithms for them seem to perform \emph{no better} than the best known algorithms for general lattices. To obtain the best possible connection factor, we instantiate our constructions with infinite families of number fields having constant \emph{root discriminant}. Such families are known to exist and are computable, though no efficient construction is yet known. Our work motivates the search for such constructions. Even constructions of number fields having root discriminant up to O(n2/3ϵ)O(n^{2/3-\epsilon}) would yield connection factors better than the current best of~O~(n)\tilde{O}(n)

    Almost universal codes for fading wiretap channels

    Full text link
    We consider a fading wiretap channel model where the transmitter has only statistical channel state information, and the legitimate receiver and eavesdropper have perfect channel state information. We propose a sequence of non-random lattice codes which achieve strong secrecy and semantic security over ergodic fading channels. The construction is almost universal in the sense that it achieves the same constant gap to secrecy capacity over Gaussian and ergodic fading models.Comment: 5 pages, to be submitted to IEEE International Symposium on Information Theory (ISIT) 201

    Search-to-Decision Reductions for Lattice Problems with Approximation Factors (Slightly) Greater Than One

    Get PDF
    We show the first dimension-preserving search-to-decision reductions for approximate SVP and CVP. In particular, for any γ1+O(logn/n)\gamma \leq 1 + O(\log n/n), we obtain an efficient dimension-preserving reduction from γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-GapSVP and an efficient dimension-preserving reduction from γO(n)\gamma^{O(n)}-CVP to γ\gamma-GapCVP. These results generalize the known equivalences of the search and decision versions of these problems in the exact case when γ=1\gamma = 1. For SVP, we actually obtain something slightly stronger than a search-to-decision reduction---we reduce γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-unique SVP, a potentially easier problem than γ\gamma-GapSVP.Comment: Updated to acknowledge additional prior wor

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Asymptotically Efficient Lattice-Based Digital Signatures

    Get PDF
    We present a general framework that converts certain types of linear collision-resistant hash functions into one-time signatures. Our generic construction can be instantiated based on both general and ideal (e.g. cyclic) lattices, and the resulting signature schemes are provably secure based on the worst-case hardness of approximating the shortest vector (and other standard lattice problems) in the corresponding class of lattices to within a polynomial factor. When instantiated with ideal lattices, the time complexity of the signing and verification algorithms, as well as key and signature size is almost linear (up to poly-logarithmic factors) in the dimension n of the underlying lattice. Since no sub-exponential (in n) time algorithm is known to solve lattice problems in the worst case, even when restricted to ideal lattices, our construction gives a digital signature scheme with an essentially optimal performance/security trade-off

    Recovering short generators of principal ideals in cyclotomic rings

    Get PDF
    Abstract: A handful of recent cryptographic proposals rely on the conjectured hardness of the following problem in the ring of integers of a cyclotomic number field: given a basis of a principal ideal that is guaranteed to have a ``rather short'' generator, find such a generator. Recently, Bernstein and Campbell-Groves-Shepherd sketched potential attacks against this problem; most notably, the latter authors claimed a \emph{polynomial-time quantum} algorithm. (Alternatively, replacing the quantum component with an algorithm of Biasse and Fieker would yield a \emph{classical subexponential-time} algorithm.) A key claim of Campbell \etal\ is that one step of their algorithm---namely, decoding the \emph{log-unit} lattice of the ring to recover a short generator from an arbitrary one---is classically efficient (whereas the standard approach on general lattices takes exponential time). However, very few convincing details were provided to substantiate this claim. In this work, we clarify the situation by giving a rigorous proof that the log-unit lattice is indeed efficiently decodable, for any cyclotomic of prime-power index. Combining this with the quantum algorithm from a recent work of Biasse and Song confirms the main claim of Campbell \etal\xspace Our proof consists of two main technical contributions: the first is a geometrical analysis, using tools from analytic number theory, of the standard generators of the group of cyclotomic units. The second shows that for a wide class of typical distributions of the short generator, a standard lattice-decoding algorithm can recover it, given any generator. By extending our geometrical analysis, as a second main contribution we obtain an efficient algorithm that, given any generator of a principal ideal (in a prime-power cyclotomic), finds a 2^O~(n^1/2) -approximate shortest vector in the ideal. Combining this with the result of Biasse and Song yields a quantum polynomial-time algorithm for the 2^O~(n^1/2)-approximate Shortest Vector Problem on principal ideal lattices
    corecore