691 research outputs found

    Non-Negative Local Sparse Coding for Subspace Clustering

    Full text link
    Subspace sparse coding (SSC) algorithms have proven to be beneficial to clustering problems. They provide an alternative data representation in which the underlying structure of the clusters can be better captured. However, most of the research in this area is mainly focused on enhancing the sparse coding part of the problem. In contrast, we introduce a novel objective term in our proposed SSC framework which focuses on the separability of data points in the coding space. We also provide mathematical insights into how this local-separability term improves the clustering result of the SSC framework. Our proposed non-linear local SSC algorithm (NLSSC) also benefits from the efficient choice of its sparsity terms and constraints. The NLSSC algorithm is also formulated in the kernel-based framework (NLKSSC) which can represent the nonlinear structure of data. In addition, we address the possibility of having redundancies in sparse coding results and its negative effect on graph-based clustering problems. We introduce the link-restore post-processing step to improve the representation graph of non-negative SSC algorithms such as ours. Empirical evaluations on well-known clustering benchmarks show that our proposed NLSSC framework results in better clusterings compared to the state-of-the-art baselines and demonstrate the effectiveness of the link-restore post-processing in improving the clustering accuracy via correcting the broken links of the representation graph.Comment: 15 pages, IDA 2018 conferenc

    Kernel Truncated Regression Representation for Robust Subspace Clustering

    Get PDF
    Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches.Comment: 14 page
    • …
    corecore