687 research outputs found

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Review on Classification Methods used in Image based Sign Language Recognition System

    Get PDF
    Sign language is the way of communication among the Deaf-Dumb people by expressing signs. This paper is present review on Sign language Recognition system that aims to provide communication way for Deaf and Dumb pople. This paper describes review of Image based sign language recognition system. Signs are in the form of hand gestures and these gestures are identified from images as well as videos. Gestures are identified and classified according to features of Gesture image. Features are like shape, rotation, angle, pixels, hand movement etc. Features are finding by various Features Extraction methods and classified by various machine learning methods. Main pupose of this paper is to review on classification methods of similar systems used in Image based hand gesture recognition . This paper also describe comarison of various system on the base of classification methods and accuracy rate

    Portuguese sign language recognition via computer vision and depth sensor

    Get PDF
    Sign languages are used worldwide by a multitude of individuals. They are mostly used by the deaf communities and their teachers, or people associated with them by ties of friendship or family. Speakers are a minority of citizens, often segregated, and over the years not much attention has been given to this form of communication, even by the scientific community. In fact, in Computer Science there is some, but limited, research and development in this area. In the particular case of sign Portuguese Sign Language-PSL that fact is more evident and, to our knowledge there isn’t yet an efficient system to perform the automatic recognition of PSL signs. With the advent and wide spreading of devices such as depth sensors, there are new possibilities to address this problem. In this thesis, we have specified, developed, tested and preliminary evaluated, solutions that we think will bring valuable contributions to the problem of Automatic Gesture Recognition, applied to Sign Languages, such as the case of Portuguese Sign Language. In the context of this work, Computer Vision techniques were adapted to the case of Depth Sensors. A proper gesture taxonomy for this problem was proposed, and techniques for feature extraction, representation, storing and classification were presented. Two novel algorithms to solve the problem of real-time recognition of isolated static poses were specified, developed, tested and evaluated. Two other algorithms for isolated dynamic movements for gesture recognition (one of them novel), have been also specified, developed, tested and evaluated. Analyzed results compare well with the literature.As Línguas Gestuais são utilizadas em todo o Mundo por uma imensidão de indivíduos. Trata-se na sua grande maioria de surdos e/ou mudos, ou pessoas a eles associados por laços familiares de amizade ou professores de Língua Gestual. Tratando-se de uma minoria, muitas vezes segregada, não tem vindo a ser dada ao longo dos anos pela comunidade científica, a devida atenção a esta forma de comunicação. Na área das Ciências da Computação existem alguns, mas poucos trabalhos de investigação e desenvolvimento. No caso particular da Língua Gestual Portuguesa - LGP esse facto é ainda mais evidente não sendo nosso conhecimento a existência de um sistema eficaz e efetivo para fazer o reconhecimento automático de gestos da LGP. Com o aparecimento ou massificação de dispositivos, tais como sensores de profundidade, surgem novas possibilidades para abordar este problema. Nesta tese, foram especificadas, desenvolvidas, testadas e efectuada a avaliação preliminar de soluções que acreditamos que trarão valiosas contribuições para o problema do Reconhecimento Automático de Gestos, aplicado às Línguas Gestuais, como é o caso da Língua Gestual Portuguesa. Foram adaptadas técnicas de Visão por Computador ao caso dos Sensores de Profundidade. Foi proposta uma taxonomia adequada ao problema, e apresentadas técnicas para a extração, representação e armazenamento de características. Foram especificados, desenvolvidos, testados e avaliados dois algoritmos para resolver o problema do reconhecimento em tempo real de poses estáticas isoladas. Foram também especificados, desenvolvidos, testados e avaliados outros dois algoritmos para o Reconhecimento de Movimentos Dinâmicos Isolados de Gestos(um deles novo).Os resultados analisados são comparáveis à literatura.Las lenguas de Signos se utilizan en todo el Mundo por una multitud de personas. En su mayoría son personas sordas y/o mudas, o personas asociadas con ellos por vínculos de amistad o familiares y profesores de Lengua de Signos. Es una minoría de personas, a menudo segregadas, y no se ha dado en los últimos años por la comunidad científica, la atención debida a esta forma de comunicación. En el área de Ciencias de la Computación hay alguna pero poca investigación y desarrollo. En el caso particular de la Lengua de Signos Portuguesa - LSP, no es de nuestro conocimiento la existencia de un sistema eficiente y eficaz para el reconocimiento automático. Con la llegada en masa de dispositivos tales como Sensores de Profundidad, hay nuevas posibilidades para abordar el problema del Reconocimiento de Gestos. En esta tesis se han especificado, desarrollado, probado y hecha una evaluación preliminar de soluciones, aplicada a las Lenguas de Signos como el caso de la Lengua de Signos Portuguesa - LSP. Se han adaptado las técnicas de Visión por Ordenador para el caso de los Sensores de Profundidad. Se propone una taxonomía apropiada para el problema y se presentan técnicas para la extracción, representación y el almacenamiento de características. Se desarrollaran, probaran, compararan y analizan los resultados de dos nuevos algoritmos para resolver el problema del Reconocimiento Aislado y Estático de Posturas. Otros dos algoritmos (uno de ellos nuevo) fueran también desarrollados, probados, comparados y analizados los resultados, para el Reconocimiento de Movimientos Dinámicos Aislados de los Gestos

    Deep Recurrent Networks for Gesture Recognition and Synthesis

    Get PDF
    It is hard to overstate the importance of gesture-based interfaces in many applications nowadays. The adoption of such interfaces stems from the opportunities they create for incorporating natural and fluid user interactions. This highlights the importance of having gesture recognizers that are not only accurate but also easy to adopt. The ever-growing popularity of machine learning has prompted many application developers to integrate automatic methods of recognition into their products. On the one hand, deep learning often tops the list of the most powerful and robust recognizers. These methods have been consistently shown to outperform all other machine learning methods in a variety of tasks. On the other hand, deep networks can be overwhelming to use for a majority of developers, requiring a lot of tuning and tweaking to work as expected. Additionally, these networks are infamous for their requirement for large amounts of training data, further hampering their adoption in scenarios where labeled data is limited. In this dissertation, we aim to bridge the gap between the power of deep learning methods and their adoption into gesture recognition workflows. To this end, we introduce two deep network models for recognition. These models are similar in spirit, but target different application domains: one is designed for segmented gesture recognition, while the other is suitable for continuous data, tackling segmentation and recognition problems simultaneously. The distinguishing characteristic of these networks is their simplicity, small number of free parameters, and their use of common building blocks that come standard with any modern deep learning framework, making them easy to implement, train and adopt. Through evaluations, we show that our proposed models achieve state-of-the-art results in various recognition tasks and application domains spanning different input devices and interaction modalities. We demonstrate that the infamy of deep networks due to their demand for powerful hardware as well as large amounts of data is an unfair assessment. On the contrary, we show that in the absence of such data, our proposed models can be quickly trained while achieving competitive recognition accuracy. Next, we explore the problem of synthetic gesture generation: a measure often taken to address the shortage of labeled data. We extend our proposed recognition models and demonstrate that the same models can be used in a Generative Adversarial Network (GAN) architecture for synthetic gesture generation. Specifically, we show that our original recognizer can be used as the discriminator in such frameworks, while its slightly modified version can act as the gesture generator. We then formulate a novel loss function for our gesture generator, which entirely replaces the need for a discriminator network in our generative model, thereby significantly reducing the complexity of our framework. Through evaluations, we show that our model is able to improve the recognition accuracy of multiple recognizers across a variety of datasets. Through user studies, we additionally show that human evaluators mistake our synthetic samples with the real ones frequently indicating that our synthetic samples are visually realistic. Additional resources for this dissertation (such as demo videos and public source codes) are available at https://www.maghoumi.com/dissertatio
    • …
    corecore