148 research outputs found

    Latent Semantic Learning with Structured Sparse Representation for Human Action Recognition

    Full text link
    This paper proposes a novel latent semantic learning method for extracting high-level features (i.e. latent semantics) from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of midlevel features, we develop a spectral embedding approach to latent semantic learning based on L1-graph, without the need to tune any parameter for graph construction as a key step of manifold learning. More importantly, we construct the L1-graph with structured sparse representation, which can be obtained by structured sparse coding with its structured sparsity ensured by novel L1-norm hypergraph regularization over mid-level features. In the new embedding space, we learn latent semantics automatically from abundant mid-level features through spectral clustering. The learnt latent semantics can be readily used for human action recognition with SVM by defining a histogram intersection kernel. Different from the traditional latent semantic analysis based on topic models, our latent semantic learning method can explore the manifold structure of mid-level features in both L1-graph construction and spectral embedding, which results in compact but discriminative high-level features. The experimental results on the commonly used KTH action dataset and unconstrained YouTube action dataset show the superior performance of our method.Comment: The short version of this paper appears in ICCV 201

    Semi-Supervised Sparse Coding

    Full text link
    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    Image classification by visual bag-of-words refinement and reduction

    Full text link
    This paper presents a new framework for visual bag-of-words (BOW) refinement and reduction to overcome the drawbacks associated with the visual BOW model which has been widely used for image classification. Although very influential in the literature, the traditional visual BOW model has two distinct drawbacks. Firstly, for efficiency purposes, the visual vocabulary is commonly constructed by directly clustering the low-level visual feature vectors extracted from local keypoints, without considering the high-level semantics of images. That is, the visual BOW model still suffers from the semantic gap, and thus may lead to significant performance degradation in more challenging tasks (e.g. social image classification). Secondly, typically thousands of visual words are generated to obtain better performance on a relatively large image dataset. Due to such large vocabulary size, the subsequent image classification may take sheer amount of time. To overcome the first drawback, we develop a graph-based method for visual BOW refinement by exploiting the tags (easy to access although noisy) of social images. More notably, for efficient image classification, we further reduce the refined visual BOW model to a much smaller size through semantic spectral clustering. Extensive experimental results show the promising performance of the proposed framework for visual BOW refinement and reduction

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201
    • …
    corecore