24 research outputs found

    Latency Constrained Aggregation in Sensor Networks

    Full text link

    Better Approximation Bounds for the Joint Replenishment Problem

    Full text link
    The Joint Replenishment Problem (JRP) deals with optimizing shipments of goods from a supplier to retailers through a shared warehouse. Each shipment involves transporting goods from the supplier to the warehouse, at a fixed cost C, followed by a redistribution of these goods from the warehouse to the retailers that ordered them, where transporting goods to a retailer ρ\rho has a fixed cost cρc_\rho. In addition, retailers incur waiting costs for each order. The objective is to minimize the overall cost of satisfying all orders, namely the sum of all shipping and waiting costs. JRP has been well studied in Operations Research and, more recently, in the area of approximation algorithms. For arbitrary waiting cost functions, the best known approximation ratio is 1.8. This ratio can be reduced to 1.574 for the JRP-D model, where there is no cost for waiting but orders have deadlines. As for hardness results, it is known that the problem is APX-hard and that the natural linear program for JRP has integrality gap at least 1.245. Both results hold even for JRP-D. In the online scenario, the best lower and upper bounds on the competitive ratio are 2.64 and 3, respectively. The lower bound of 2.64 applies even to the restricted version of JRP, denoted JRP-L, where the waiting cost function is linear. We provide several new approximation results for JRP. In the offline case, we give an algorithm with ratio 1.791, breaking the barrier of 1.8. In the online case, we show a lower bound of 2.754 on the competitive ratio for JRP-L (and thus JRP as well), improving the previous bound of 2.64. We also study the online version of JRP-D, for which we prove that the optimal competitive ratio is 2

    Scalable and efficient data processing in networked control systems

    Get PDF
    Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation

    Online Algorithms for Multi-Level Aggregation

    Get PDF
    In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted tree T, and have to be served eventually. A service is defined as a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem, while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and in supply-chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant competitive online algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D^4*2^D), where D is the depth of T. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines. We include several additional results in the paper. We show that a standard lower-bound technique for MLAP, based on so-called Single-Phase instances, cannot give super-constant lower bounds (as a function of the tree depth). This result is established by giving an online algorithm with optimal competitive ratio 4 for such instances on arbitrary trees. We also study the MLAP variant when the tree is a path, for which we give a lower bound of 4 on the competitive ratio, improving the lower bound known for general MLAP. We complement this with a matching upper bound for the deadline setting

    Online Algorithms for Multi-Level Aggregation

    Full text link
    In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted tree T, and have to be served eventually. A service is defined as a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem, while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and in supply-chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant competitive online algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D^4 2^D), where D is the depth of T. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines. We also show several additional lower and upper bound results for some special cases of MLAP, including the Single-Phase variant and the case when the tree is a path

    A Weakly-Robust PTAS for Minimum Clique Partition in Unit Disk Graphs

    Full text link
    We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a {\em weakly robust} polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths, it either (i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case (i) that it computes a clique partition, we show that it is guaranteed to be within (1+\eps) ratio of the optimum if the input is UDG; however if the input is not a UDG it either computes a clique partition as in case (i) with no guarantee on the quality of the clique partition or detects that it is not a UDG. Noting that recognition of UDG's is NP-hard even if we are given edge lengths, our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an O(\frac{\log^* n}{\eps^{O(1)}}) time distributed PTAS. We consider a weighted version of the clique partition problem on vertex weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas useful in obtaining a PTAS breakdown. Yet, surprisingly, it admits a (2+\eps)-approximation algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This improves on the best known 8-approximation for the {\em unweighted} case for UDGs expressed in standard form.Comment: 21 pages, 9 figure

    The submodular joint replenishment problem

    Get PDF
    The joint replenishment problem is a fundamental model in supply chain management theory that has applications in inventory management, logistics, and maintenance scheduling. In this problem, there are multiple item types, each having a given time-dependent sequence of demands that need to be satisfied. In order to satisfy demand, orders of the item types must be placed in advance of the due dates for each demand. Every time an order of item types is placed, there is an associated joint setup cost depending on the subset of item types ordered. This ordering cost can be due to machine, transportation, or labor costs, for example. In addition, there is a cost to holding inventory for demand that has yet to be served. The overall goal is to minimize the total ordering costs plus inventory holding costs. In this paper, the cost of an order, also known as a joint setup cost, is a monotonically increasing, submodular function over the item types. For this general problem, we show that a greedy approach provides an approximation guarantee that is logarithmic in the number of demands. Then we consider three special cases of submodular functions which we call the laminar, tree, and cardinality cases, each of which can model real world scenarios that previously have not been captured. For each of these cases, we provide a constant factor approximation algorithm. Specifically, we show that the laminar case can be solved optimally in polynomial time via a dynamic programming approach. For the tree and cardinality cases, we provide two different linear programming based approximation algorithms that provide guarantees of three and five, respectively.National Science Foundation (U.S.) (CAREER Grant CMMI-0846554)United States. Air Force Office of Scientific Research (Award FA9550-11-1-0150)SMA GrantSolomon Buchsbaum AT&T Research Fun
    corecore