7,610 research outputs found

    Parameterized Inapproximability of Target Set Selection and Generalizations

    Full text link
    In this paper, we consider the Target Set Selection problem: given a graph and a threshold value thr(v)thr(v) for any vertex vv of the graph, find a minimum size vertex-subset to "activate" s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex vv is activated during the propagation process if at least thr(v)thr(v) of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions ff and ρ\rho this problem cannot be approximated within a factor of ρ(k)\rho(k) in f(k)nO(1)f(k) \cdot n^{O(1)} time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results

    Influence Diffusion in Social Networks under Time Window Constraints

    Full text link
    We study a combinatorial model of the spread of influence in networks that generalizes existing schemata recently proposed in the literature. In our model, agents change behaviors/opinions on the basis of information collected from their neighbors in a time interval of bounded size whereas agents are assumed to have unbounded memory in previously studied scenarios. In our mathematical framework, one is given a network G=(V,E)G=(V,E), an integer value t(v)t(v) for each node vVv\in V, and a time window size λ\lambda. The goal is to determine a small set of nodes (target set) that influences the whole graph. The spread of influence proceeds in rounds as follows: initially all nodes in the target set are influenced; subsequently, in each round, any uninfluenced node vv becomes influenced if the number of its neighbors that have been influenced in the previous λ\lambda rounds is greater than or equal to t(v)t(v). We prove that the problem of finding a minimum cardinality target set that influences the whole network GG is hard to approximate within a polylogarithmic factor. On the positive side, we design exact polynomial time algorithms for paths, rings, trees, and complete graphs.Comment: An extended abstract of a preliminary version of this paper appeared in: Proceedings of 20th International Colloquium on Structural Information and Communication Complexity (Sirocco 2013), Lectures Notes in Computer Science vol. 8179, T. Moscibroda and A.A. Rescigno (Eds.), pp. 141-152, 201

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
    corecore