19 research outputs found

    Are crossings important for drawing large graphs?

    Full text link
    Reducing the number of edge crossings is considered one of the most important graph drawing aesthetics. While real-world graphs tend to be large and dense, most of the earlier work on evaluating the impact of edge crossings utilizes relatively small graphs that are manually generated and manipulated. We study the effect on task performance of increased edge crossings in automatically generated layouts for graphs, from different datasets, with different sizes, and with different densities. The results indicate that increasing the number of crossings negatively impacts accuracy and performance time and that impact is significant for small graphs but not significant for large graphs. We also quantitatively evaluate the impact of edge crossings on crossing angles and stress in automatically constructed graph layouts. We find a moderate correlation between minimizing stress and the minimizing the number of crossings. © Springer-Verlag Berlin Heidelberg 2014.National Science Foundation, NSF: CCF-1115971National Science Foundation, NSF: DEB-105357

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Graph Drawing via Gradient Descent, (GD)2(GD)^2

    Full text link
    Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Graph Drawing via Gradient Descent, (GD)2(GD)^2, that can handle multiple readability criteria. (GD)2(GD)^2 can optimize any criterion that can be described by a smooth function. If the criterion cannot be captured by a smooth function, a non-smooth function for the criterion is combined with another smooth function, or auto-differentiation tools are used for the optimization. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of (GD)2(GD)^2 with experimental data and a functional prototype: \url{http://hdc.cs.arizona.edu/~mwli/graph-drawing/}.Comment: Appears in the Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020
    corecore