6,274 research outputs found

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    DART: Distribution Aware Retinal Transform for Event-based Cameras

    Full text link
    We introduce a generic visual descriptor, termed as distribution aware retinal transform (DART), that encodes the structural context using log-polar grids for event cameras. The DART descriptor is applied to four different problems, namely object classification, tracking, detection and feature matching: (1) The DART features are directly employed as local descriptors in a bag-of-features classification framework and testing is carried out on four standard event-based object datasets (N-MNIST, MNIST-DVS, CIFAR10-DVS, NCaltech-101). (2) Extending the classification system, tracking is demonstrated using two key novelties: (i) For overcoming the low-sample problem for the one-shot learning of a binary classifier, statistical bootstrapping is leveraged with online learning; (ii) To achieve tracker robustness, the scale and rotation equivariance property of the DART descriptors is exploited for the one-shot learning. (3) To solve the long-term object tracking problem, an object detector is designed using the principle of cluster majority voting. The detection scheme is then combined with the tracker to result in a high intersection-over-union score with augmented ground truth annotations on the publicly available event camera dataset. (4) Finally, the event context encoded by DART greatly simplifies the feature correspondence problem, especially for spatio-temporal slices far apart in time, which has not been explicitly tackled in the event-based vision domain.Comment: 12 pages, revision submitted to TPAMI in Nov 201

    Single-Shot Clothing Category Recognition in Free-Configurations with Application to Autonomous Clothes Sorting

    Get PDF
    This paper proposes a single-shot approach for recognising clothing categories from 2.5D features. We propose two visual features, BSP (B-Spline Patch) and TSD (Topology Spatial Distances) for this task. The local BSP features are encoded by LLC (Locality-constrained Linear Coding) and fused with three different global features. Our visual feature is robust to deformable shapes and our approach is able to recognise the category of unknown clothing in unconstrained and random configurations. We integrated the category recognition pipeline with a stereo vision system, clothing instance detection, and dual-arm manipulators to achieve an autonomous sorting system. To verify the performance of our proposed method, we build a high-resolution RGBD clothing dataset of 50 clothing items of 5 categories sampled in random configurations (a total of 2,100 clothing samples). Experimental results show that our approach is able to reach 83.2\% accuracy while classifying clothing items which were previously unseen during training. This advances beyond the previous state-of-the-art by 36.2\%. Finally, we evaluate the proposed approach in an autonomous robot sorting system, in which the robot recognises a clothing item from an unconstrained pile, grasps it, and sorts it into a box according to its category. Our proposed sorting system achieves reasonable sorting success rates with single-shot perception.Comment: 9 pages, accepted by IROS201
    corecore