1,066 research outputs found

    Iterative and doubling algorithms for Riccati-type matrix equations: a comparative introduction

    Full text link
    We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of \emph{doubling}: they construct the iterate Qk=X2kQ_k = X_{2^k} of another naturally-arising fixed-point iteration (Xh)(X_h) via a sort of repeated squaring. The equations we consider are Stein equations X−A∗XA=QX - A^*XA=Q, Lyapunov equations A∗X+XA+Q=0A^*X+XA+Q=0, discrete-time algebraic Riccati equations X=Q+A∗X(I+GX)−1AX=Q+A^*X(I+GX)^{-1}A, continuous-time algebraic Riccati equations Q+A∗X+XA−XGX=0Q+A^*X+XA-XGX=0, palindromic quadratic matrix equations A+QY+A∗Y2=0A+QY+A^*Y^2=0, and nonlinear matrix equations X+A∗X−1A=QX+A^*X^{-1}A=Q. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.Comment: Review article for GAMM Mitteilunge

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    A Comparison of Numerical Methods for Model Reduction of Dense Discrete-Time Systems

    Get PDF

    New Computational Algorithms for Analyzing the Stability of the Differential Equations System

    Get PDF
    In this paper we show how to improve the approximate solution of the large Lyapunov equation obtained by an arbitrary method. Moreover, we propose a new method based on refinement process and Weighted Arnoldi algorithm for solving large Lyapunov matrix equation. Finally, some numerical results will be reported to illustrate the efficiency of the proposed method
    • …
    corecore