15 research outputs found

    Large-scale Multi-view Subspace Clustering in Linear Time

    Full text link
    A plethora of multi-view subspace clustering (MVSC) methods have been proposed over the past few years. Researchers manage to boost clustering accuracy from different points of view. However, many state-of-the-art MVSC algorithms, typically have a quadratic or even cubic complexity, are inefficient and inherently difficult to apply at large scales. In the era of big data, the computational issue becomes critical. To fill this gap, we propose a large-scale MVSC (LMVSC) algorithm with linear order complexity. Inspired by the idea of anchor graph, we first learn a smaller graph for each view. Then, a novel approach is designed to integrate those graphs so that we can implement spectral clustering on a smaller graph. Interestingly, it turns out that our model also applies to single-view scenario. Extensive experiments on various large-scale benchmark data sets validate the effectiveness and efficiency of our approach with respect to state-of-the-art clustering methods.Comment: Accepted by AAAI 202

    Scalable Multi-view Clustering via Explicit Kernel Features Maps

    Full text link
    A growing awareness of multi-view learning as an important component in data science and machine learning is a consequence of the increasing prevalence of multiple views in real-world applications, especially in the context of networks. In this paper we introduce a new scalability framework for multi-view subspace clustering. An efficient optimization strategy is proposed, leveraging kernel feature maps to reduce the computational burden while maintaining good clustering performance. The scalability of the algorithm means that it can be applied to large-scale datasets, including those with millions of data points, using a standard machine, in a few minutes. We conduct extensive experiments on real-world benchmark networks of various sizes in order to evaluate the performance of our algorithm against state-of-the-art multi-view subspace clustering methods and attributed-network multi-view approaches

    Asymmetric double-winged multi-view clustering network for exploring Diverse and Consistent Information

    Full text link
    In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by aligning the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms

    Efficient Multi-View Graph Clustering with Local and Global Structure Preservation

    Full text link
    Anchor-based multi-view graph clustering (AMVGC) has received abundant attention owing to its high efficiency and the capability to capture complementary structural information across multiple views. Intuitively, a high-quality anchor graph plays an essential role in the success of AMVGC. However, the existing AMVGC methods only consider single-structure information, i.e., local or global structure, which provides insufficient information for the learning task. To be specific, the over-scattered global structure leads to learned anchors failing to depict the cluster partition well. In contrast, the local structure with an improper similarity measure results in potentially inaccurate anchor assignment, ultimately leading to sub-optimal clustering performance. To tackle the issue, we propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG). Specifically, a unified framework with a theoretical guarantee is designed to capture local and global information. Besides, EMVGC-LG jointly optimizes anchor construction and graph learning to enhance the clustering quality. In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number, which is time-economical and scales well with the data size. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method.Comment: arXiv admin note: text overlap with arXiv:2308.1654

    High-order Multi-view Clustering for Generic Data

    Full text link
    Graph-based multi-view clustering has achieved better performance than most non-graph approaches. However, in many real-world scenarios, the graph structure of data is not given or the quality of initial graph is poor. Additionally, existing methods largely neglect the high-order neighborhood information that characterizes complex intrinsic interactions. To tackle these problems, we introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data. Firstly, graph filtering is applied to encode structure information, which unifies the processing of attributed graph data and non-graph data in a single framework. Secondly, up to infinity-order intrinsic relationships are exploited to enrich the learned graph. Thirdly, to explore the consistent and complementary information of various views, an adaptive graph fusion mechanism is proposed to achieve a consensus graph. Comprehensive experimental results on both non-graph and attributed graph data show the superior performance of our method with respect to various state-of-the-art techniques, including some deep learning methods

    One-step Multi-view Clustering with Diverse Representation

    Full text link
    Multi-view clustering has attracted broad attention due to its capacity to utilize consistent and complementary information among views. Although tremendous progress has been made recently, most existing methods undergo high complexity, preventing them from being applied to large-scale tasks. Multi-view clustering via matrix factorization is a representative to address this issue. However, most of them map the data matrices into a fixed dimension, which limits the expressiveness of the model. Moreover, a range of methods suffer from a two-step process, i.e., multimodal learning and the subsequent kk-means, inevitably causing a sub-optimal clustering result. In light of this, we propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and kk-means into a unified framework. Specifically, we first project original data matrices into various latent spaces to attain comprehensive information and auto-weight them in a self-supervised manner. Then we directly use the information matrices under diverse dimensions to obtain consensus discrete clustering labels. The unified work of representation learning and clustering boosts the quality of the final results. Furthermore, we develop an efficient optimization algorithm to solve the resultant problem with proven convergence. Comprehensive experiments on various datasets demonstrate the promising clustering performance of our proposed method
    corecore