8 research outputs found

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Large-scale binary quadratic optimization using semidefinite relaxation and applications

    No full text
    In computer vision, many problems can be formulated as binary quadratic programs (BQPs), which are in general NP hard. Finding a solution when the problem is of large size to be of practical interest typically requires relaxation. Semidefinite relaxation usually yields tight bounds, but its computational complexity is high. In this work, we present a semidefinite programming (SDP) formulation for BQPs, with two desirable properties. First, it produces similar bounds to the standard SDP formulation. Second, compared with the conventional SDP formulation, the proposed SDP formulation leads to a considerably more efficient and scalable dual optimization approach. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the simplified dual problem. Both of them are significantly more efficient than standard interior-point methods. Empirically the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems

    Large-scale binary quadratic optimization using semidefinite relaxation and applications

    No full text
    In computer vision, many problems can be formulated as binary quadratic programs (BQPs), which are in general NP hard. Finding a solution when the problem is of large size to be of practical interest typically requires relaxation. Semidefinite relaxation usually yields tight bounds, but its computational complexity is high. In this work, we present a semidefinite programming (SDP) formulation for BQPs, with two desirable properties. First, it produces similar bounds to the standard SDP formulation. Second, compared with the conventional SDP formulation, the proposed SDP formulation leads to a considerably more efficient and scalable dual optimization approach. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the simplified dual problem. Both of them are significantly more efficient than standard interior-point methods. Empirically the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems.Peng Wang, Chunhua Shen, Anton van den Hengel and Philip H.S. Tor

    Large-Scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    No full text

    Calculating Sparse and Dense Correspondences for Near-Isometric Shapes

    Get PDF
    Comparing and analysing digital models are basic techniques of geometric shape processing. These techniques have a variety of applications, such as extracting the domain knowledge contained in the growing number of digital models to simplify shape modelling. Another example application is the analysis of real-world objects, which itself has a variety of applications, such as medical examinations, medical and agricultural research, and infrastructure maintenance. As methods to digitalize physical objects mature, any advances in the analysis of digital shapes lead to progress in the analysis of real-world objects. Global shape properties, like volume and surface area, are simple to compare but contain only very limited information. Much more information is contained in local shape differences, such as where and how a plant grew. Sadly the computation of local shape differences is hard as it requires knowledge of corresponding point pairs, i.e. points on both shapes that correspond to each other. The following article thesis (cumulative dissertation) discusses several recent publications for the computation of corresponding points: - Geodesic distances between points, i.e. distances along the surface, are fundamental for several shape processing tasks as well as several shape matching techniques. Chapter 3 introduces and analyses fast and accurate bounds on geodesic distances. - When building a shape space on a set of shapes, misaligned correspondences lead to points moving along the surfaces and finally to a larger shape space. Chapter 4 shows that this also works the other way around, that is good correspondences are obtain by optimizing them to generate a compact shape space. - Representing correspondences with a “functional map” has a variety of advantages. Chapter 5 shows that representing the correspondence map as an alignment of Green’s functions of the Laplace operator has similar advantages, but is much less dependent on the number of eigenvectors used for the computations. - Quadratic assignment problems were recently shown to reliably yield sparse correspondences. Chapter 6 compares state-of-the-art convex relaxations of graphics and vision with methods from discrete optimization on typical quadratic assignment problems emerging in shape matching
    corecore