277,750 research outputs found

    Customizing General-Purpose Foundation Models for Medical Report Generation

    Full text link
    Medical caption prediction which can be regarded as a task of medical report generation (MRG), requires the automatic generation of coherent and accurate captions for the given medical images. However, the scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks capable of harnessing the potential artificial general intelligence power like large language models (LLMs). In this work, we propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs), in computer vision and natural language processing with a specific focus on medical report generation. Specifically, following BLIP-2, a state-of-the-art vision-language pre-training approach, we introduce our encoder-decoder-based MRG model. This model utilizes a lightweight query Transformer to connect two FMs: the giant vision Transformer EVA-ViT-g and a bilingual LLM trained to align with human intentions (referred to as ChatGLM-6B). Furthermore, we conduct ablative experiments on the trainable components of the model to identify the crucial factors for effective transfer learning. Our findings demonstrate that unfreezing EVA-ViT-g to learn medical image representations, followed by parameter-efficient training of ChatGLM-6B to capture the writing styles of medical reports, is essential for achieving optimal results. Our best attempt (PCLmed Team) achieved the 4th and the 2nd, respectively, out of 13 participating teams, based on the BERTScore and ROUGE-1 metrics, in the ImageCLEFmedical Caption 2023 Caption Prediction Task competition.Comment: 14 pages, 3 figure

    Generation-Distillation for Efficient Natural Language Understanding in Low-Data Settings

    Full text link
    Over the past year, the emergence of transfer learning with large-scale language models (LM) has led to dramatic performance improvements across a broad range of natural language understanding tasks. However, the size and memory footprint of these large LMs makes them difficult to deploy in many scenarios (e.g. on mobile phones). Recent research points to knowledge distillation as a potential solution, showing that when training data for a given task is abundant, it is possible to distill a large (teacher) LM into a small task-specific (student) network with minimal loss of performance. However, when such data is scarce, there remains a significant performance gap between large pretrained LMs and smaller task-specific models, even when training via distillation. In this paper, we bridge this gap with a novel training approach, called generation-distillation, that leverages large finetuned LMs in two ways: (1) to generate new (unlabeled) training examples, and (2) to distill their knowledge into a small network using these examples. Across three low-resource text classification datsets, we achieve comparable performance to BERT while using 300x fewer parameters, and we outperform prior approaches to distillation for text classification while using 3x fewer parameters.Comment: EMNLP 2019 Workshop on Deep Learning for Low-resource NL

    CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

    Full text link
    Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark

    Automatic Image Captioning with Style

    Get PDF
    This thesis connects two core topics in machine learning, vision and language. The problem of choice is image caption generation: automatically constructing natural language descriptions of image content. Previous research into image caption generation has focused on generating purely descriptive captions; I focus on generating visually relevant captions with a distinct linguistic style. Captions with style have the potential to ease communication and add a new layer of personalisation. First, I consider naming variations in image captions, and propose a method for predicting context-dependent names that takes into account visual and linguistic information. This method makes use of a large-scale image caption dataset, which I also use to explore naming conventions and report naming conventions for hundreds of animal classes. Next I propose the SentiCap model, which relies on recent advances in artificial neural networks to generate visually relevant image captions with positive or negative sentiment. To balance descriptiveness and sentiment, the SentiCap model dynamically switches between two recurrent neural networks, one tuned for descriptive words and one for sentiment words. As the first published model for generating captions with sentiment, SentiCap has influenced a number of subsequent works. I then investigate the sub-task of modelling styled sentences without images. The specific task chosen is sentence simplification: rewriting news article sentences to make them easier to understand. For this task I design a neural sequence-to-sequence model that can work with limited training data, using novel adaptations for word copying and sharing word embeddings. Finally, I present SemStyle, a system for generating visually relevant image captions in the style of an arbitrary text corpus. A shared term space allows a neural network for vision and content planning to communicate with a network for styled language generation. SemStyle achieves competitive results in human and automatic evaluations of descriptiveness and style. As a whole, this thesis presents two complete systems for styled caption generation that are first of their kind and demonstrate, for the first time, that automatic style transfer for image captions is achievable. Contributions also include novel ideas for object naming and sentence simplification. This thesis opens up inquiries into highly personalised image captions; large scale visually grounded concept naming; and more generally, styled text generation with content control

    Text generation for small data regimes

    Get PDF
    In Natural Language Processing (NLP), applications trained on downstream tasks for text classification usually require enormous amounts of data to perform well. Neural Network (NN) models are among the applications that can always be trained to produce better results. Yet, a huge factor in improving results is the ability to scale over large datasets. Given that Deep NNs are known to be data hungry, having more training samples can always be beneficial. For a classification model to perform well, it could require thousands or even millions of textual training examples. Transfer learning enables us to leverage knowledge gained from general data collections to perform well on target tasks. In NLP, training language models on large data collections has been shown to achieve great results when tuned to different task-specific datasets Wang et al. (2019, 2018a). However, even with transfer learning, adequate training data remains a condition for training machine learning models. Nonetheless, we show that small textual datasets can be augmented to a degree that is enough to achieve improved classification performance. In this thesis, we make multiple contributions to data augmentation. Firstly, we transform the data generation task into an optimization problem which maximizes the usefulness of the generated output, using Monte Carlo Tree Search (MCTS) as the optimization strategy and incorporating entropy as one of the optimization criteria. Secondly, we propose a language generation approach for targeted data generation with the participation of the training classifier. With a user in the loop, we find that manual annotation of a small proportion of the generated data is enough to boost classification performance. Thirdly, under a self-learning scheme, we replace the user by an automated approach in which the classifier is trained on its own pseudo-labels. Finally, we extend the data generation approach to the knowledge distillation domain, by generating samples that a teacher model can confidently label, but not its student

    Semi-Supervised Learning for Neural Keyphrase Generation

    Full text link
    We study the problem of generating keyphrases that summarize the key points for a given document. While sequence-to-sequence (seq2seq) models have achieved remarkable performance on this task (Meng et al., 2017), model training often relies on large amounts of labeled data, which is only applicable to resource-rich domains. In this paper, we propose semi-supervised keyphrase generation methods by leveraging both labeled data and large-scale unlabeled samples for learning. Two strategies are proposed. First, unlabeled documents are first tagged with synthetic keyphrases obtained from unsupervised keyphrase extraction methods or a selflearning algorithm, and then combined with labeled samples for training. Furthermore, we investigate a multi-task learning framework to jointly learn to generate keyphrases as well as the titles of the articles. Experimental results show that our semi-supervised learning-based methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables
    • …
    corecore