1,874 research outputs found

    Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth About Happiness Scales

    Full text link
    Econometric analyses in the happiness literature typically use subjective well-being (SWB) data to compare the mean of observed or latent happiness across samples. Recent critiques show that comparing the mean of ordinal data is only valid under strong assumptions that are usually rejected by SWB data. This leads to an open question whether much of the empirical studies in the economics of happiness literature have been futile. In order to salvage some of the prior results and avoid future issues, we suggest regression analysis of SWB (and other ordinal data) should focus on the median rather than the mean. Median comparisons using parametric models such as the ordered probit and logit can be readily carried out using familiar statistical softwares like STATA. We also show a previously assumed impractical task of estimating a semiparametric median ordered-response model is also possible by using a novel constrained mixed integer optimization technique. We use GSS data to show the famous Easterlin Paradox from the happiness literature holds for the US independent of any parametric assumption

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an ϵ\epsilon-approximate solution for the continuous problem in O(nlogmlognBϵ)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlogmlogB)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlogm)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated

    Training linear ranking SVMs in linearithmic time using red-black trees

    Full text link
    We introduce an efficient method for training the linear ranking support vector machine. The method combines cutting plane optimization with red-black tree based approach to subgradient calculations, and has O(m*s+m*log(m)) time complexity, where m is the number of training examples, and s the average number of non-zero features per example. Best previously known training algorithms achieve the same efficiency only for restricted special cases, whereas the proposed approach allows any real valued utility scores in the training data. Experiments demonstrate the superior scalability of the proposed approach, when compared to the fastest existing RankSVM implementations.Comment: 20 pages, 4 figure

    Sparse Regression with Multi-type Regularized Feature Modeling

    Full text link
    Within the statistical and machine learning literature, regularization techniques are often used to construct sparse (predictive) models. Most regularization strategies only work for data where all predictors are treated identically, such as Lasso regression for (continuous) predictors treated as linear effects. However, many predictive problems involve different types of predictors and require a tailored regularization term. We propose a multi-type Lasso penalty that acts on the objective function as a sum of subpenalties, one for each type of predictor. As such, we allow for predictor selection and level fusion within a predictor in a data-driven way, simultaneous with the parameter estimation process. We develop a new estimation strategy for convex predictive models with this multi-type penalty. Using the theory of proximal operators, our estimation procedure is computationally efficient, partitioning the overall optimization problem into easier to solve subproblems, specific for each predictor type and its associated penalty. Earlier research applies approximations to non-differentiable penalties to solve the optimization problem. The proposed SMuRF algorithm removes the need for approximations and achieves a higher accuracy and computational efficiency. This is demonstrated with an extensive simulation study and the analysis of a case-study on insurance pricing analytics

    Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data

    Full text link
    This paper addresses the learning task of estimating driver drowsiness from the signals of car acceleration sensors. Since even drivers themselves cannot perceive their own drowsiness in a timely manner unless they use burdensome invasive sensors, obtaining labeled training data for each timestamp is not a realistic goal. To deal with this difficulty, we formulate the task as a weakly supervised learning. We only need to add labels for each complete trip, not for every timestamp independently. By assuming that some aspects of driver drowsiness increase over time due to tiredness, we formulate an algorithm that can learn from such weakly labeled data. We derive a scalable stochastic optimization method as a way of implementing the algorithm. Numerical experiments on real driving datasets demonstrate the advantages of our algorithm against baseline methods.Comment: Accepted by ICASSP202
    corecore