6 research outputs found

    Large Scale Transmit Diversity in Q/V Band Feeder Link with Multiple Gateways

    Get PDF
    Exploiting transmit diversity amid a high number of multiple gateways (GW) is a new research challenge in Q/V band satellite communication providing data rates of hundreds of Gbit/s. In this paper, we propose a practical switching strategy in a scenario with N +P GWs (N active and P redundant GWs) towards achieving GW transmit diversity. Differently from other works, the treatment in this paper is analytical and explores two key factors: outage performance and switching rate in detail. Further, the interplay between the number of redundant and active GWs on the availability is illustrated highlighting the contribution of the work towards system sizing

    Large scale transmit diversity in Q/V band feeder link with multiple gateways

    No full text
    Exploiting transmit diversity amid a high number of multiple gateways (GW) is a new research challenge in Q/V band satellite communication providing data rates of hundreds of Gbit/s. In this paper, we propose a practical switching strategy in a scenario with N+P GWs (N active and P redundant GWs) towards achieving GW transmit diversity. Differently from other works, the treatment in this paper is analytical and explores two key factors: outage performance and switching rate in detail. Further, the interplay between the number of redundant and active GWs on the availability is illustrated highlighting the contribution of the work towards system sizing

    Ground‐to‐GEO optical feeder links for very high throughput satellite networks: Accent on diversity techniques

    Get PDF
    This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical frequencies. Focusing on a GEO scenario, the paper considers a system‐wide approach investigating various challenges of optical feeder links. These include transmission schemes amenable for transparent on‐board processing, optical channel models taking into account blockage by clouds and fading caused by atmospheric turbulence in addition to complexity of on‐board and on‐ground processing. The channel models are then used to dimension the ground segment towards ensuring a given availability percentage (e.g., 99.9%). The channel model and payload complexity further influence the choice of link layer techniques used for counteracting fading due to atmospheric turbulence in the absence of blockage. An elaborate end‐to‐end simulator incorporating the proposed channel models capturing the nuances of various processing blocks like optical‐electrical conversion is developed. The system performance results provide interesting insights and a framework for assessing the feasibility and advantages of optical feeder links in VHTS systems
    corecore