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Abstract—Exploiting transmit diversity amid a high number
of multiple gateways (GW) is a new research challenge in Q/V
band satellite communication providing data rates of hundreds
of Gbit/s. In this paper, we propose a practical switching strategy
in a scenario withN+P GWs (N active andP redundant GWs)
towards achieving GW transmit diversity. Differently from other
works, the treatment in this paper is analytical and explores two
key factors: outage performance and switching rate in detail.
Further, the interplay between the number of redundant and
active GWs on the availability is illustrated highlighting the
contribution of the work towards system sizing.

Index Terms—Gateway Diversity, active and redundant gate-
ways, Q/V Band, Satellite Communication, Feeder Link.

I. I NTRODUCTION

Demands on broadband data services are increasing dra-
matically every year. Although, satellite solutions have the
advantage of covering these demands over a wide geography,
to stay competitive with terrestrial solutions, it is necessary
to push the limits of the capacity. Current satellite systems
have capacity of about 70−100 Gbps and it is estimated that
next generation satellites will require capacity of one Terabit/s
(1000 Gbps) by 2020 [1]. A key challenge to achieve a
Terabit/s broadband satellite communication (SatCom) system
is the limited spectrum of about 2 GHz available in current
Ka band. Following the traditional trend, this can be tackled
by gradually shifting to a higher frequency band whenever the
relevant technology is mature enough. Therefore, an attractive
solution for resolving the issue is moving the feeder link
from the Ka-band to the Q/V-band (40/50GHz) where larger
bandwidth, up to 5 GHz, is available [1]−[3]. Further, it
can free up the whole Ka-band spectrum for the user link.
Moreover, it allows locating the gateways (GW) within the
service area minimizing the interference between the feeder
link and user link [3].

However, moving the feeder link to Q/V band imposes
considerable strain on the link-budget, predominantly dueto
heavy rain attenuation which is of the order of 15−20 dB
[2]. The typical Fade Mitigation Technique (FMT) is the
uplink power control. However, it can compensate only a few
dBs, thereby motivating the use of multiple GWs for transmit
diversity to achieve the required availability in excess of99.9%
on the feeder link.

When the number of GWs is limited, the traditional1 + 1
scheme, where each GW is supported by a redundant GW

can be an acceptable solution for GW transmit diversity. On
the other hand, for high capacity satellite systems where tens
of GWs are envisaged, it is not efficient to use traditional
techniques. A system employing multiple GWs is the recently
launched high throughput Ka-sat which has 82 spot beams and
served by 10 GWs. Therefore designing smarter techniques for
diversity becomes essential.

An interesting GW transmit diversity technique isN + P
diversity scheme, which was studied in [1], [4] and [5]. In
this scheme, there are N active GWs and P redundant or idle
GWs. When one of the active GWs is in outage, switching
occurs and traffic of the active GW is rerouted to one of
the idle GWs. Some works have been published exploring
this scheme, for example [1], [4]−[7], but most of them take
a high-level approach for system design without a rigorous
mathematical analysis. To the best of our knowledge, the only
work that has analysed GW diversity mathematically is [1]
where authors derive the availability in aN + P scenario.
However, the authors in [1] do not describe if and how such
an availability could be achieved. Further, the switching rate,
which is an important system parameter is not studied in
[1]. A high switching rate can lead to severe overheads and
instability thereby warranting its further analysis. In this paper,
we present a simple practical switching scheme well suited for
theN + P gateway scenario. Further, we derive closed form
expressions for average outage performance and switching
probability. These expressions provide insights on the trade-
offs between outage, switching rate and spectral efficiency
while serving as tools for system sizing.

The remainder of this paper is organised as follows. Section
II introduces the system and channel models forN + P
diversity scheme. In Section III, performance of the proposed
scheme is evaluated analytically in terms of outage and switch-
ing probability. Numerical results are presented in Section IV.
Concluding remarks are provided in Section V.

II. CHANNEL MODEL AND GW SWITCHING STRATEGY

A. Channel Model

Consider a satellite feeder link withN active GWs andP
idle GWs denoted byGWa,n(n = 1, ..., N) andGWb,k(k =
1, ..., P ) respectively. We assume that all GWs are connected
to a Network Control Centre (NCC) node which has access
to the channel state information of all GWs. The channels
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between the gatewayGWx,i , (x, i) ∈ {(a, n), (b, k)} and the
satellite att = mT is denoted byhx,i[m] = |hx,i[m]|ejβx,i

whereβx,i is the phase component. The channel amplitudes,
|hx,i[m]|, can be estimated at each GW using a beacon signal
received from the satellite. Therefore, the correspondingSignal
to Noise Ratio (SNR) for the active and idle GWs att = mT
can be obtained byγx,i[m] = |hx,i[m]|2γCSUL

whereγCSUL

is the clear sky SNR for the feeder uplink (from now on we
will drop m for simplicity).

In the Q/V band−and in general in millimeter wave
frequencies− the main impairment is the rain attenuation
which is typically modelled using the lognormal distribution
[9]. In our work, the other clear-sky effects are assumed to
be compensated by a fixed fade margin or an uplink power
control scheme. The rain attenuation and the channel gains are
related asAx,i = −10 log10 |hx,i|2. The GWs are located far
apart so that they can be assumed to experience independent
rain attenuation. Also, for tractability of analysis, we assume
identical rain attenuation statistics among the differentGWs.
This assumption is later shown to be mild when non identical
distributions are considered in the numerical simulations.
Under these assumptions, the corresponding rain attenuations
{Aa,n}Nn=1 and {Ab,k}Pk=1 are i.i.d random variables with
probability density function (PDF),pA(.) and cumulative
distribution function (CDF),PA(.). From [9], the lognormal
pA(.) takes the form

pA(A) =
1√

2πσA
e−

(ln A−m)2

2σ2 . (1)

Here,m and σ are the mean and standard deviation oflnA
respectively. As a representative case, we use the parameters
calculated for Luxembourg city using ITU-R Recommen-
dation P.618 [9]. Due to independence of{Aa,n}Nn=1 and
{Ab,k}Pk=1, we can assume that SNR of the active and idle
GWs, {γa,n}Nn=1 and {γb,k}Pk=1, are i.i.d random variables
with common PDF,pγ(.) and CDF,Pγ(.).

B. GW Switching Strategy

Fig. 1 illustrates the switching strategy in detail. After col-
lecting all SNRs, NCC sorts the active and idle GWs based on
their SNR indecreasing order (this is same as sorting the GWs
based on their rain attenuation inincreasing order). Thenth
largest SNR of the active GWs and its corresponding GW are
denoted byγ(a,n) andGW(a,n) respectively. For the idle GWs,
the kth largest SNR and its corresponding GW are depicted
by γ(b,k) andGW(b,k) respectively. Therefore, we can write
γ(a,1) ≥ γ(a,2)... ≥ γ(a,N) and γ(b,1) ≥ γ(b,2)... ≥ γ(b,P ).
According to the relation between the channel gain and rain
attenuation, we have|h(a,i)|2 = 10−A[a,i], whereA[a,i] is the
ith smallest value of the rain attenuation. Hence, we can write
A[a,1] ≤ A[a,2] ≤ ... ≤ A[a,N ] and A[b,1] ≤ A[b,2] ≤ ... ≤
A[b,P ].

After the sorting step, NCC initiates switching between idle
GW(b,k) and activeGW(a,k′), wherek = 1, ..., P and k′ =
N − k+ 1. Thus,P switching pairs will be formed such that
the weakest active GW,GW(a,N), will have the best chance to

Start (k = 0)

Collect all SNRs
γa,1, γa,2, ..., γa,N
γb,1, γb,2, ..., γb,P

Sort
γ(a,1) ≥ γ(a,2) ≥ ... ≥ γ(a,N)

γ(b,1) ≥ γ(b,2) ≥ ... ≥ γ(b,P )

k = k+1

k′ = N − k + 1

Switching between
GW(b,k) andGW(a,k′)

γ(a,k′) < γT ,
k ≤ P

γ(b,k) > γT

Stop

Yes

Yes

No

No

Fig. 1. Flowchart of N+P Gateway Switching scheme

switch to the strongest idle GW,GW(b,1). The switching will
take place based on a scheme similar to modified switch and
stay combining (MSSC) technique introduced for two GWs
in [8]. In this MSSC based switching method, ifγ(a,k′) is
lower thanγT andγ(b,k) is higher thanγT , switching occurs
between two GWs. Here,γT is switching threshold and its
selection will be detailed in the sequel.

If the switching takes place for the first pair, i.e. between
γ(b,1) andγ(a,N), the NCC will continue the switching process
for the subsequent pairs upon investigating the necessity of
switching for those as well. Note that in each time slot,
the state of the GWs (active or idle) might change due to
switching. However, this will not impact the ensuing statistical
analysis since the SNR associated with different GWs have
independent and identical distribution.

III. PERFORMANCE STUDY

A. Outage Probability

In this subsection, we will study the performance of the
proposed scheme in terms of average outage. We denote
the outage threshold byγth and define the average outage
probability of the system as

P̄out(γth)=
1

N

(

N−P
∑

n=1

PNS
out,n(γth) +

P
∑

k=1

PS
out,k(γth)

)

. (3)



P̄out(γth) =
1

N

N−P
∑

n=1

(

1− PA[a,n]
(αth)

)

+
1

N

P
∑

k=1

(

2− PA[a,k′]
(αth)− PA[b,k]

(αth)
)

1/(1− PA[a,k′]
(αT )) + 1/(1− PA[b,k]

(αT ))
. (2)

HerePNS
out,n(γth), 1 ≤ n ≤ N−P , is the outage probability of

each of theN−P GWs that are not involved in the switching
process. Further,PS

out,k(γth) is the outage probability of each
of theP switching pairs.

We now evaluatePS
out,k(γth) and PNS

out,n(γth). Assuming
γT ≥ γth, the outage probabilities of the switching pairs,
PS
out,k(γth), can be calculated using the results of [10] as,

PS
out,k(γth) =

Pγ(a,k′)
(γth) + Pγ(b,k)

(γth)

1/Pγ(a,k′)
(γT ) + 1/Pγ(b,k)

(γT )
, (4)

wherePγ(x,i)
(z) = Pr{γ(x,i) ≤ z}, x ∈ {a, b}. The outage

probability of the remainingN − P active GWs, that are not
involved in the switching process can be calculated as

PNS
out,n(γth) =Pr{γ(a,n) ≤ γth} = Pr{A[a,n] > ΓCS − Γth}

=1− PA[a,n]
(ΓCS − Γth), 1 ≤ n ≤ N−P, (5)

whereΓCS = 10 log γCS , Γth = 10 log γth and PA[a,n]
(.)

is the CDF of nth order statistics. Similarly, we can find
that Pγ(u,v)

(γth) = 1 − PA[u,v]
(αth) andPγ(u,v)

(γT ) = 1 −
PA[u,v]

(αT ) whereu ∈ {a, b}, v ∈ {k, k′}, αth = ΓCS −Γth,
αT = ΓCS − ΓT and ΓT = 10 log γT . In the above
expressions,PA[a,v]

andPA[b,v]
can be obtained from [11] as,

PA[a,v]
(α) =

N
∑

t=v

(

N

t

)

[PA(α)]
t
(1 − PA(α))

N−t, (6)

PA[b,v]
(α) =

P
∑

t=v

(

P

t

)

[PA(α)]
t
(1− PA(α))

P−t. (7)

It remains to evaluatePA(α) towards obtaining (3). Since
rain attenuation follows the log-normal distribution as in(1),
PA(α) can be obtained as

PA(α) =

∫ α

0

1√
2πσA

e−
(ln A−m)2

2σ2 dA

= 0.5 + 0.5 erf

(

lnα−m√
2σ

)

. (8)

Finally, by substituting (4) and (5) in (3) we get an expression
for average outage probability of the system given in (2), top
of the next page.

Remark 1: Effect of switching threshold on outage:From
(4), it is easy to show that the optimum switching threshold
(γT ) in the sense of minimum outage probability isγT = γth.
In this case, (4) can be simplified as

PS
out,k(γth) = Pγ(a,k′)

(γth)Pγ(b,k)
(γth) . (9)

Remark 2: Effect of switching threshold on spectral effi-
ciency: Clearly, when a higher threshold is chosen, the GW
supports a spectrally more efficient transmission when active.

TABLE I
PROPAGATION AND LINK BUDGET ASSUMPTIONS

Feeder Up-Link Value

Carrier frequency 50 GHz

Elevation angle 32◦

Polarization Circular

EIRPGW including back-off 76.5 dBW

UL free space loss 218.3 dB

(G/T)Sat 31.45 dB

γCSUL
28.3 dB

This leads to an improved spectral efficiency for the whole
system.
In Section IV, we will discuss more about the effect of
choosing differentγT .

B. Switching Rate

When a GW switching strategy is used, the switching rate
is an important issue since a high switching rate results in
high overhead and can make the system unstable. Therefore,
in this subsection we analyze the switching rate of theN +P
diversity scheme. As explained in subsection II-B, switching
will occur betweenγ(a,k′) andγ(b,k) based on MSSC scheme.
Hence, similar to the approach used in [8], it is possible to
define a six state Markov chain model for each switching pair.
The transitional probability matrixP of the Markov chain can
be obtained as( for details kindly refer to [8]),

P =



















1− pa,k′ pk pa,k′ − pk 0 0 0
1− pa,k′ pk pa,k′ − pk 0 0 0

0 0 0 1− pb,k pk pb,k − pk
0 0 0 1− pb,k pk pb,k − pk
0 0 0 1− pb,k pk pb,k − pk

1− pa,k′ pk pa,k′ − pk 0 0 0



















,

(10)
where pa,k′ = Pγ(a,k′)

(γT ), pb,k = Pγ(b,k)
(γT ) and pk =

Pγ(a,k′)
(γT )Pγ(b,k)

(γT ). We defineπi,k as the probability that
kth switching pair is in statei. By using the facts that−→π =
−→π P and

∑6
i=1 πi,k = 1, where−→π = [π1,k, π2,k, ..., π6,k],

switching probability ofkth pair can be calculated as

πk(γT ) =
2(pa,k′ − pk)(pb,k − pk)

pa,k′ + pb,k − 2pk
, (11)

Now, we can define the average switching probability as

π =
1

P

P
∑

k=1

πk(γT ). (12)

Now, the switching rate can be easily calculated asπ/T where
T is the interval between switching instants.



TABLE II
DVB-S2 MODCODSCHEME

ModCod ΓT [dB]

QPSK 1/4 -2.72

QPSK 1/3 -1.52

QPSK 1/2 0.73

QPSK 3/5 1.93

QPSK 2/3 2.83

QPSK 3/4 3.78

QPSK 5/6 4.83

8PSK 3/5 5.33

8PSK 2/3 6.43

8PSK 3/4 7.63

16APSK 2/3 9.95

16APSK 3/4 11.20

16APSK 4/5 12.05

16APSK 5/6 12.60

32APSK 3/4 14.58

32APSK 4/5 15.08

32APSK 5/6 16.18
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Fig. 2. Average outage probability for differentN + P configurations

IV. N UMERICAL RESULTS AND DISCUSSION

Table I details the propagation parameters that were used
as input to the empirical rain attenuation prediction model
included in ITU-R Recommendation P.618 [9]. It also presents
the forward feeder link budget that has been used in the
numerical results.

Fig. 2 illustrates the feeder-link outage performance of
the proposed scheme for different configurations when the
optimum switching threshold is selected,γT = γth. It is
aimed at providing some insights about the effect ofN , P on
performance and aid in system design. We can see that, with
the number of idle GWs fixed (P = 1), the outage probability
degrades gracefully increasing the number of active GWs. This
means that if we assign only one idle GW for 10 active GWs,

16 18 20 22 24 26 28
10

−4

10
−3

10
−2

10
−1

10
0

γ
th

[dB]

A
ve

ra
ge

 P
ou

t

 

 
16+4
12+3
8+2
4+1

N/P=4
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= 4 and differentN+P schemes

this scheme could still provide acceptable outage performance.
Also, it can be seen that for a fixed number of active GWs
(N = 10), if we increase the number of idle GWs for 1 to 2
outage probability decreases considerably.

In Fig. 2, we also plotted the outage probability for non i.i.d
4+1 case. To study the performance of the system in a more
realistic (non i.i.d) scenario, we located GWs in five European
cities (Luxembourg, London, Amsterdam, Berlin and Athens)
with different rainfall characteristics. We then comparedthe
result with the i.i.d case. As can be see from Fig. 2, the i.i.dand
non i.i.d case have very similar outage performance. Therefore,
we can conclude that considering i.i.d rain attenuation is an
acceptable assumption and will not considerably change the
results of this study. So, we will focus on i.i.d case in the
simulations. It is worth mentioning that all results except4+1
non i.i.d case are theoretical evaluations.

Fig. 3 presents the average outage probability of different
configurations whenN

P
= 4. It can be inferred from the figure

that for a fixed ratio ofN
P

, if the number of GWs increases,
the system will have a better outage performance. This means
that, for example, if there are 8 active GWs and 2 idle GWs,
8+2 architecture will result in better overall performancethan
two 4+1 cluster.

Fig. 4 presents the average availability of the large scale GW
diversity scheme (1−P̄out in percentage) versus unavailability
of a single GW (1− PA(αth) in percentage). For the case of
4+1 and 7+1, it can be seen that if availability of each GW is
99%, the average availability of the whole GW network will
be around 99.97% and 99.96% respectively.

Fig. 5 shows the influence of different switching thresholds,
γT , on the switching probability, average outage probability
and the spectral efficiency of the system. In fact,γT is chosen
correspond to the minimumEs

N0
required to support a certain

Modcod in DVB-S2 [12]. The thresholds and the associated
Modcods are presented in Table II for completeness.

The trade-off between spectral efficiency and outage prob-



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
99.84

99.86

99.88

99.9

99.92

99.94

99.96

99.98

100

Unavailability of each GW (%) 

A
ve

ra
ge

 A
va

ila
bi

lit
y 

of
 G

W
s 

(%
)

 

 

4+1
4+2
7+1
7+2

Fig. 4. Average availability of the GWs versus unavailability of a single GW

−5 0 5 10 15 20
10

−4

10
−2

A
ve

ra
ge

 S
w

itc
hi

ng
/O

ut
ag

e 
P

ro
ba

bi
lit

y

 

 

−5 0 5 10 15 20
3.32

3.33

 

 

−5 0 5 10 15 20
3.32

3.33

A
ve

ra
ge

 S
pe

ct
ra

l E
ffi

ci
en

cy
 

Switching Threshold, γ
T
 [dB]

Spectral Efficiency (10+1)
Switching Probability (10+1)
100 x Outage Probability (10+1)

Fig. 5. Average Switching probability for different switching thresholds

ability caused by threshold selection has been detailed in
remarks 1 and 2 of Section III. However, from Fig. 5, the
improvements in spectral efficiency are negligible while the
switching rate is sensitive to the threshold. This naturally
leads to the choice of threshold resulting in an optimal outage/
switching rate for the considered scenario. As expected, byin-
creasingγT , the switching probability of the system increases
and so does the spectral efficiency.

V. CONCLUSION

In this paper, we devised a realistic switching scheme to
exploit large scale diversity in multiple GW scenario necessary

when moving the feeder link of a multibeam boradband
satellite network to Q/V band. Two novel aspects of the
proposed scheme are the association of GWs into switching
pairs based on ordered SNR and the use of robust MSSC
strategy. Expressions for key performance indicators− outage

and switching rate− have been derived providing insights into
system sizing especially on the relative effect of the number
of idle and active GWs. An interesting result is that bigger
clusters yield better performance for a fixed ratio of idle and
active GWs.
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