5 research outputs found

    A Tale of Two Set Theories

    Full text link
    We describe the relationship between two versions of Tarski-Grothendieck set theory: the first-order set theory of Mizar and the higher-order set theory of Egal. We show how certain higher-order terms and propositions in Egal have equivalent first-order presentations. We then prove Tarski's Axiom A (an axiom in Mizar) in Egal and construct a Grothendieck Universe operator (a primitive with axioms in Egal) in Mizar

    Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq

    Get PDF
    We mechanise the undecidability of various frst-order axiom systems in Coq, employing the synthetic approach to computability underlying the growing Coq Library of Undecidability Proofs. Concretely, we cover both semantic and deductive entailment in fragments of Peano arithmetic (PA) as well as ZF and related fnitary set theories, with their undecidability established by many-one reductions from solvability of Diophantine equations, i.e. Hilbert’s tenth problem (H10), and the Post correspondence problem (PCP), respectively. In the synthetic setting based on the computability of all functions defnable in a constructive foundation, such as Coq’s type theory, it sufces to defne these reductions as metalevel functions with no need for further encoding in a formalised model of computation. The concrete cases of PA and the considered set theories are supplemented by a general synthetic theory of undecidable axiomatisations, focusing on well-known connections to consistency and incompleteness. Specifcally, our reductions rely on the existence of standard models, necessitating additional assumptions in the case of full ZF, and all axiomatic extensions still justifed by such standard models are shown incomplete. As a by-product of the undecidability of set theories formulated using only membership and no equality symbol, we obtain the undecidability of frst-order logic with a single binary relation

    Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens

    Get PDF
    26 pages, extended version of the IJCAR 2020 paper. arXiv admin note: substantial text overlap with arXiv:2004.07390International audienceWe study finite first-order satisfiability (FSAT) in the constructive setting of dependent type theory. Employing synthetic accounts of enumerability and decidability, we give a full classification of FSAT depending on the first-order signature of non-logical symbols. On the one hand, our development focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as the signature contains an at least binary relation symbol. Our proof proceeds by a many-one reduction chain starting from the Post correspondence problem. On the other hand, we establish the decidability of FSAT for monadic first-order logic, i.e. where the signature only contains at most unary function and relation symbols, as well as the enumerability of FSAT for arbitrary enumerable signatures. To showcase an application of Trakthenbrot's theorem, we continue our reduction chain with a many-one reduction from FSAT to separation logic. All our results are mechanised in the framework of a growing Coq library of synthetic undecidability proofs

    Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens

    Get PDF
    We study finite first-order satisfiability (FSAT) in the constructive setting of dependent type theory. Employing synthetic accounts of enumerability and decidability, we give a full classification of FSAT depending on the first-order signature of non-logical symbols. On the one hand, our development focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as the signature contains an at least binary relation symbol. Our proof proceeds by a many-one reduction chain starting from the Post correspondence problem. On the other hand, we establish the decidability of FSAT for monadic first-order logic, i.e. where the signature only contains at most unary function and relation symbols, as well as the enumerability of FSAT for arbitrary enumerable signatures. To showcase an application of Trakhtenbrot's theorem, we continue our reduction chain with a many-one reduction from FSAT to separation logic. All our results are mechanised in the framework of a growing Coq library of synthetic undecidability proofs
    corecore