89,172 research outputs found

    Diffusion-Based Adaptive Distributed Detection: Steady-State Performance in the Slow Adaptation Regime

    Full text link
    This work examines the close interplay between cooperation and adaptation for distributed detection schemes over fully decentralized networks. The combined attributes of cooperation and adaptation are necessary to enable networks of detectors to continually learn from streaming data and to continually track drifts in the state of nature when deciding in favor of one hypothesis or another. The results in the paper establish a fundamental scaling law for the steady-state probabilities of miss-detection and false-alarm in the slow adaptation regime, when the agents interact with each other according to distributed strategies that employ small constant step-sizes. The latter are critical to enable continuous adaptation and learning. The work establishes three key results. First, it is shown that the output of the collaborative process at each agent has a steady-state distribution. Second, it is shown that this distribution is asymptotically Gaussian in the slow adaptation regime of small step-sizes. And third, by carrying out a detailed large deviations analysis, closed-form expressions are derived for the decaying rates of the false-alarm and miss-detection probabilities. Interesting insights are gained. In particular, it is verified that as the step-size μ\mu decreases, the error probabilities are driven to zero exponentially fast as functions of 1/μ1/\mu, and that the error exponents increase linearly in the number of agents. It is also verified that the scaling laws governing errors of detection and errors of estimation over networks behave very differently, with the former having an exponential decay proportional to 1/μ1/\mu, while the latter scales linearly with decay proportional to μ\mu. It is shown that the cooperative strategy allows each agent to reach the same detection performance, in terms of detection error exponents, of a centralized stochastic-gradient solution.Comment: The paper will appear in IEEE Trans. Inf. Theor

    Large Deviations Performance of Consensus+Innovations Distributed Detection with Non-Gaussian Observations

    Full text link
    We establish the large deviations asymptotic performance (error exponent) of consensus+innovations distributed detection over random networks with generic (non-Gaussian) sensor observations. At each time instant, sensors 1) combine theirs with the decision variables of their neighbors (consensus) and 2) assimilate their new observations (innovations). This paper shows for general non-Gaussian distributions that consensus+innovations distributed detection exhibits a phase transition behavior with respect to the network degree of connectivity. Above a threshold, distributed is as good as centralized, with the same optimal asymptotic detection performance, but, below the threshold, distributed detection is suboptimal with respect to centralized detection. We determine this threshold and quantify the performance loss below threshold. Finally, we show the dependence of the threshold and performance on the distribution of the observations: distributed detectors over the same random network, but with different observations' distributions, for example, Gaussian, Laplace, or quantized, may have different asymptotic performance, even when the corresponding centralized detectors have the same asymptotic performance.Comment: 30 pages, journal, submitted Nov 17, 2011; revised Apr 3, 201

    Distributed Detection over Random Networks: Large Deviations Performance Analysis

    Full text link
    We study the large deviations performance, i.e., the exponential decay rate of the error probability, of distributed detection algorithms over random networks. At each time step kk each sensor: 1) averages its decision variable with the neighbors' decision variables; and 2) accounts on-the-fly for its new observation. We show that distributed detection exhibits a "phase change" behavior. When the rate of network information flow (the speed of averaging) is above a threshold, then distributed detection is asymptotically equivalent to the optimal centralized detection, i.e., the exponential decay rate of the error probability for distributed detection equals the Chernoff information. When the rate of information flow is below a threshold, distributed detection achieves only a fraction of the Chernoff information rate; we quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of distributed detection over random networks.Comment: 30 pages, journal, submitted on December 3rd, 201

    Robust Distributed Fusion with Labeled Random Finite Sets

    Get PDF
    This paper considers the problem of the distributed fusion of multi-object posteriors in the labeled random finite set filtering framework, using Generalized Covariance Intersection (GCI) method. Our analysis shows that GCI fusion with labeled multi-object densities strongly relies on label consistencies between local multi-object posteriors at different sensor nodes, and hence suffers from a severe performance degradation when perfect label consistencies are violated. Moreover, we mathematically analyze this phenomenon from the perspective of Principle of Minimum Discrimination Information and the so called yes-object probability. Inspired by the analysis, we propose a novel and general solution for the distributed fusion with labeled multi-object densities that is robust to label inconsistencies between sensors. Specifically, the labeled multi-object posteriors are firstly marginalized to their unlabeled posteriors which are then fused using GCI method. We also introduce a principled method to construct the labeled fused density and produce tracks formally. Based on the developed theoretical framework, we present tractable algorithms for the family of generalized labeled multi-Bernoulli (GLMB) filters including δ\delta-GLMB, marginalized δ\delta-GLMB and labeled multi-Bernoulli filters. The robustness and efficiency of the proposed distributed fusion algorithm are demonstrated in challenging tracking scenarios via numerical experiments.Comment: 17pages, 23 figure

    Automatic Detection of Cone Photoreceptors In Split Detector Adaptive Optics Scanning Light Ophthalmoscope Images

    Get PDF
    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images

    Detecting Sunyaev-Zel'dovich clusters with PLANCK: III. Properties of the expected SZ-cluster sample

    Full text link
    The PLANCK-mission is the most sensitive all-sky submillimetric mission currently being planned and prepared. Special emphasis is given to the observation of clusters of galaxies by their thermal Sunyaev-Zel'dovich (SZ) effect. In this work, the results of a simulation are presented that combines all-sky maps of the thermal and kinetic SZ-effect with cosmic microwave background (CMB) fluctuations, Galactic foregrounds (synchrotron emission, thermal emission from dust, free-free emission and rotational transitions of carbon monoxide molecules) and sub-millimetric emission from planets and asteroids of the Solar System. Observational issues, such as PLANCKs beam shapes, frequency response and spatially non-uniform instrumental noise have been incorporated. Matched and scale-adaptive multi-frequency filtering schemes have been extended to spherical coordinates and are now applied to the data sets in order to isolate and amplify the weak thermal SZ-signal. The properties of the resulting SZ-cluster sample are characterised in detail: Apart from the number of clusters as a function of cluster parameters such as redshift z and total mass M, the distribution n(sigma)d sigma of the detection significance sigma, the number of detectable clusters in relation to the model cluster parameters entering the filter construction, the position accuracy of an SZ-detection and the cluster number density as a function of ecliptic latitude beta is examined.Comment: 14 pages, 16 figures, 13 tables, submitted to MNRAS, 16.Feb.200

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763

    Design of a High-Performance High-Pass Generalized Integrator Based Single-Phase PLL

    Full text link
    Grid-interactive power converters are normally synchronized to the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate of the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have least resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to the design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results are found to agree with the theoretical prediction.Comment: 22 pages, 13 figures and 2 table
    corecore