6,597 research outputs found

    On random k-out sub-graphs of large graphs

    Full text link
    We consider random sub-graphs of a fixed graph G=(V,E)G=(V,E) with large minimum degree. We fix a positive integer kk and let GkG_k be the random sub-graph where each vVv\in V independently chooses kk random neighbors, making knkn edges in all. When the minimum degree δ(G)(12+ϵ)n,n=V\delta(G)\geq (\frac12+\epsilon)n,\,n=|V| then GkG_k is kk-connected w.h.p. for k=O(1)k=O(1); Hamiltonian for kk sufficiently large. When δ(G)m\delta(G) \geq m, then GkG_k has a cycle of length (1ϵ)m(1-\epsilon)m for kkϵk\geq k_\epsilon. By w.h.p. we mean that the probability of non-occurrence can be bounded by a function ϕ(n)\phi(n) (or ϕ(m)\phi(m)) where limnϕ(n)=0\lim_{n\to\infty}\phi(n)=0

    Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

    Full text link
    P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    Long cycles in graphs with large degree sums and neighborhood unions

    Get PDF
    We present and prove several results concerning the length of longest cycles in 2-connected or 1-tough graphs with large degree sums. These results improve many known results on long cycles in these graphs. We also consider the sharpness of the results and discuss some possible strengthenings

    Cycles containing many vertices of large degree

    Get PDF
    AbstractLet G be a 2-connected graph of order n, r a real number and Vr=v ϵ V(G)¦d(v)⩾r. It is shown that G contains a cycle missing at most max {0, n − 2r} vertices of Vr, yielding a common generalization of a result of Dirac and one of Shi Ronghua. A stronger conclusion holds if r⩾13(n+2): G contains a cycle C such that either V(C)⊇Vr or ¦ V(C)¦⩾2r. This theorem extends a result of Häggkvist and Jackson and is proved by first showing that if r⩾13(n+2), then G contains a cycle C for which ¦Vr∩V(C)¦is maximal such that N(x)⊆V(C) whenever x ϵ Vr − V(C) (∗). A result closely related to (∗) is stated and a result of Nash-Williams is extended using (∗)

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs
    corecore