61,271 research outputs found

    Deep Metric Multi-View Hashing for Multimedia Retrieval

    Full text link
    Learning the hash representation of multi-view heterogeneous data is an important task in multimedia retrieval. However, existing methods fail to effectively fuse the multi-view features and utilize the metric information provided by the dissimilar samples, leading to limited retrieval precision. Current methods utilize weighted sum or concatenation to fuse the multi-view features. We argue that these fusion methods cannot capture the interaction among different views. Furthermore, these methods ignored the information provided by the dissimilar samples. We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems. Extensive empirical evidence is presented to show that gate-based fusion is better than typical methods. We introduce deep metric learning to the multi-view hashing problems, which can utilize metric information of dissimilar samples. On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin (up to 15.28 mean Average Precision (mAP) improvement).Comment: Accepted by IEEE ICME 202

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method
    • …
    corecore