363 research outputs found

    Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis

    Full text link
    We propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as LDDMM-HYDI. We then propose a Bayesian model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and thus reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the qq-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI

    Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images

    Full text link
    We present an information-theoretic approach to the registration of images with directional information, and especially for diffusion-Weighted Images (DWI), with explicit optimization over the directional scale. We call it Locally Orderless Registration with Directions (LORD). We focus on normalized mutual information as a robust information-theoretic similarity measure for DWI. The framework is an extension of the LOR-DWI density-based hierarchical scale-space model that varies and optimizes the integration, spatial, directional, and intensity scales. As affine transformations are insufficient for inter-subject registration, we extend the model to non-rigid deformations. We illustrate that the proposed model deforms orientation distribution functions (ODFs) correctly and is capable of handling the classic complex challenges in DWI-registrations, such as the registration of fiber-crossings along with kissing, fanning, and interleaving fibers. Our experimental results clearly illustrate a novel promising regularizing effect, that comes from the nonlinear orientation-based cost function. We show the properties of the different image scales and, we show that including orientational information in our model makes the model better at retrieving deformations in contrast to standard scalar-based registration.Comment: 16 pages, 19 figure

    Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    Full text link
    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm

    Unsupervised Fiber Bundles Registration using Weighted Measures Geometric Demons

    Get PDF
    International audienceBrain image registration aims at reducing anatomical variability across subjects to create a common space for group analysis. Multi-modal approaches intend to minimize cortex shape variations along with internal structures, such as fiber bundles. A di ficulty is that it requires a prior identi fication of these structures, which remains a challenging task in the absence of a complete reference atlas. We propose an extension of the log-Geometric Demons for jointly registering images and fi ber bundles without the need of point or ber correspondences. By representing fi ber bundles as Weighted Measures we can register subjects with di fferent numbers of fiber bundles. The ef ficacy of our algorithm is demonstrated by registering simultaneously T1 images and between 37 and 88 ber bundles depending on each of the ten subject used. We compare results with a multi-modal T1 + Fractional Anisotropy (FA) and a tensor-based registration algorithms and obtain superior performance with our approach

    Large deformation diffeomorphic registration of diffusion-weighted imaging data

    Get PDF
    Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration of DWI data requires both spatial alignment of structures and reorientation of local signal profiles. As such, DWI registration is much more complex and challenging than scalar image registration. Although a variety of algorithms has been proposed to tackle the problem, most of them are restricted by the zdiffusion model used for registration, making it difficult to fit to the registered data a different model. In this paper we describe a method that allows any diffusion model to be fitted after registration for subsequent multifaceted analysis. This is achieved by directly aligning DWI data using a large deformation diffeomorphic registration framework. Our algorithm seeks the optimal coordinate mapping by simultaneously considering structural alignment, local signal profile reorientation, and deformation regularization. Our algorithm also incorporates a multi-kernel strategy to concurrently register anatomical structures at different scales. We demonstrate the efficacy of our approach using in vivo data and report detailed qualitative and quantitative results in comparison with several different registration strategies
    corecore