16,751 research outputs found

    Large Data and Zero Noise Limits of Graph-Based Semi-Supervised Learning Algorithms

    Get PDF
    Scalings in which the graph Laplacian approaches a differential operator in the large graph limit are used to develop understanding of a number of algorithms for semi-supervised learning; in particular the extension, to this graph setting, of the probit algorithm, level set and kriging methods, are studied. Both optimization and Bayesian approaches are considered, based around a regularizing quadratic form found from an affine transformation of the Laplacian, raised to a, possibly fractional, exponent. Conditions on the parameters defining this quadratic form are identified under which well-defined limiting continuum analogues of the optimization and Bayesian semi-supervised learning problems may be found, thereby shedding light on the design of algorithms in the large graph setting. The large graph limits of the optimization formulations are tackled through Γ−convergence, using the recently introduced TL^p metric. The small labelling noise limits of the Bayesian formulations are also identified, and contrasted with pre-existing harmonic function approaches to the problem

    Large Data and Zero Noise Limits of Graph-Based Semi-Supervised Learning Algorithms

    Get PDF
    Scalings in which the graph Laplacian approaches a differential operator in the large graph limit are used to develop understanding of a number of algorithms for semi-supervised learning; in particular the extension, to this graph setting, of the probit algorithm, level set and kriging methods, are studied. Both optimization and Bayesian approaches are considered, based around a regularizing quadratic form found from an affine transformation of the Laplacian, raised to a, possibly fractional, exponent. Conditions on the parameters defining this quadratic form are identified under which well-defined limiting continuum analogues of the optimization and Bayesian semi-supervised learning problems may be found, thereby shedding light on the design of algorithms in the large graph setting. The large graph limits of the optimization formulations are tackled through Γ−convergence, using the recently introduced TL^p metric. The small labelling noise limits of the Bayesian formulations are also identified, and contrasted with pre-existing harmonic function approaches to the problem

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    Random sampling of bandlimited signals on graphs

    Get PDF
    We study the problem of sampling k-bandlimited signals on graphs. We propose two sampling strategies that consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary, the second strategy is adaptive but yields optimal results. Indeed, no more than O(k log(k)) measurements are sufficient to ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is based on a careful choice of the sampling distribution, which can be estimated quickly. Then, we propose a computationally efficient decoder to reconstruct k-bandlimited signals from their samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we conduct several experiments to test these techniques
    • 

    corecore