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Abstract. We study the problem of sampling k-bandlimited signals on graphs. We propose two sampling strategies
that consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of

the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary, the
second strategy is adaptive but yields optimal results. Indeed, no more than O(k log(k)) measurements are sufficient to
ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is based on a careful choice

of the sampling distribution, which can be estimated quickly. Then, we propose a computationally efficient decoder to
reconstruct k-bandlimited signals from their samples. We prove that it yields accurate reconstructions and that it is
also stable to noise. Finally, we conduct several experiments to test these techniques.

1. Introduction

Graphs are a central modelling tool for network-structured data [1]. Depending on the application,
the nodes of a graph may represent people in social networks, brain regions in neuronal networks, or
stations in transportation networks. Data on a graph, such as individual hobbies, activity of brain
regions, traffic at a station, may be represented by scalars defined on each node, which form a graph
signal. Extending classical signal processing methods to graph signals is the purpose of the emerging
field of graph signal processing [2, 3].

Within this framework, a cornerstone is sampling, i.e., measuring a graph signal on a reduced
set of nodes carefully chosen to enable stable reconstructions. Classically, sampling a continuous
signal x(t) consists in measuring a countable sequence of its values, {x(tj)}j∈Z, that ensures its
recovery under a given smoothness model [4]. Smoothness assumptions are often defined in terms
of the signal’s Fourier transform. For example, Shannon’s famous sampling theorem [5] states that
any ω-bandlimited signal can be recovered exactly from its values at tj = j/2ω. Similar theorems
exist for other classes of signals, e.g., signals on the sphere [6]; and other types of sampling schemes,
e.g., irregular sampling [7, 8] or compressive sampling [9]. Extending these theorems to graph signals
requires to decide on a smoothness model and to design a sampling scheme that enables stable recovery.

Natural choices of smoothness models build upon, e.g., the graph’s adjacency matrix, the com-
binatorial Laplacian matrix, the normalised Laplacian, or the random walk Laplacian. The sets of
eigenvectors of these operators define different graph Fourier bases. Given such a Fourier basis, the
equivalent of a classical ω-bandlimited signal is a k-bandlimited graph signal whose k first Fourier
coefficients are non-null [10, 11].

Unlike continuous time signal processing, the concept of regular sampling itself is not applicable for
graph signals, apart for very regular graphs such as bipartite graphs [12]. We are left with two possible
choices for sampling: irregular or random sampling. Irregular sampling of k-bandlimited graph signals
has been studied first by Pesenson [13,14] who introduced the notion of uniqueness set associated to the
subspace of k-bandlimited graph signals. If two k-bandlimited graph signals are equal on a uniqueness
set, they are necessarily equal on the whole graph. Building upon this first work, and using the fact
that the sampling matrix applied to the first k Fourier modes should have rank k in order to guarantee
recovery of k-bandlimited signals, Anis et al. [11, 15] and Chen et al. [10, 16] showed that a sampling
set of size k that perfectly embeds k-bandlimited signals always exists. To find such an optimal
set, the authors need to compute the first k eigenvectors of the Laplacian, which is computationally
prohibitive for large graphs. A recent work [17] bypasses the partial diagonalisation of the Laplacian
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by using graph spectral proxies, but the procedure to find an optimal sampling set still requires a
search over all possible subsets of nodes of a given size. This is a very large combinatorial problem.
In practice, approximate results are obtained using a greedy heuristic that enables the authors to
efficiently perform experiments on graphs of size up to few thousands nodes.

Several other sampling schemes exist in the literature, such as schemes based on a bipartite decom-
position of the graph [12], on a decomposition via maximum spanning trees [18], on the sign of the last
Fourier mode [19], on the sign of the Fiedler vector [20], or on a decomposition in communities [21].
All these propositions are however specifically designed for graph multiresolution analysis with filter-
banks, and are not suited to find optimal or close-to-optimal sets of nodes for sampling k-bandlimited
graph signals.

1.1. Main Contributions

In this paper, we propose a very different approach to sampling on graphs. Instead of trying to find
an optimal sampling set, (i.e., a set of size k) for k-bandlimited signals, we relax this optimality
constraint in order to tackle graphs of very large size. We allow ourselves to sample slightly more
than k nodes and, inspired by compressive sampling, we propose two random sampling schemes that
ensure recovery of graph signals with high probability.

A central graph characteristic that appears from our study is the graph weighted coherence of order
k (see Definition 2.1). This quantity is a measure of the localisation of the first k Fourier modes on the
nodes of the graph. Unlike the classical Fourier modes, some graph Fourier modes have the surprising
potential of being localised on very few nodes. The farther a graph is from a regular grid, the higher
the chance to have a few localised Fourier modes. This particularity in graph signal processing is
studied in [22–24] but is still largely not understood.

First, we propose a non-adaptive sampling technique that consists in choosing few nodes at ran-
dom to form the sampling set. In this setting, we show that the number of samples ensuring the
reconstruction of all k-bandlimited signals scales with the square of the graph weighted coherence.
For regular or almost-regular graphs, i.e., graphs whose coherence is close to

√
k, this result shows

that O(k log k) samples selected using the uniform distribution are sufficient to sample k-bandlimited
signals. We thus obtain an almost optimal sampling condition.

Second, for general graphs with a coherence potentially tending to
√
n, where n ≫ k is the total

number of nodes, we propose a second sampling strategy that compensates the undesirable conse-
quences of mode localisation. The technique relies on the variable density sampling strategy widely
used in compressed sensing [25–27]. We prove that there always exists a sampling distribution such
that no more than O(k log k) samples are sufficient to ensure exact and stable reconstructions of all
k-bandlimited signals, whatever the graph structure. Unfortunately, computing the optimal sam-
pling distribution requires the partial diagonalisation of the first k eigenvectors of the Laplacian. To
circumvent this issue, we propose a fast technique to estimate this optimal sampling distribution
accurately.

Finally, we propose an efficient method to reconstruct any k-bandlimited signal from its samples.
We prove that the method recovers k-bandlimited signals exactly in the absence of noise. We also
prove that the method is robust to measurement noise and model errors.

Note that our sampling theorems are applicable to any symmetrical Laplacian or adjacency ma-
trix, i.e., any weighted undirected graphs. Nevertheless, the efficient recovery method we propose is
specifically designed to take advantage of the semi-definite positivity of the Laplacian operator. In
the following, we therefore concentrate on such positive semi-definite Laplacians.

Let us acknowledge that the idea of random sampling for k-bandlimited graph signals is mentioned
in [10] and [28]. In [10], the authors prove that the space of k-bandlimited graph signals can be
stably embedded using a uniform sampling but for the Erdős-Rényi graph only. The idea of using a
non-uniform sampling appears in [28]. However, the authors do not prove that this sampling strategy
provides a stable embedding of the space of k-bandlimited graph signals. We prove this result in
Section 2 but also show that there always exists a sampling distribution that yields optimal results.
Finally, the reconstruction methods proposed in [28] requires a partial diagonalisation of the Laplacian
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matrix, unlike ours. We also have much stronger recovery guarantees than the ones presented in [28],
which are expected recovery guarantees.

1.2. Notations and definitions

For any matrix X ∈ Rm×n, ∥X∥2 denotes the spectral norm of X, λmax(X) denotes the largest eigenvalue
of X, and λmin(X) denotes the smallest eigenvalue of X. For any vector x ∈ Rn, ∥x∥2 denotes the
Euclidean norm of x. Depending on the context, xj may represent the jth entry of the vector x or the
jth column-vector of the matrix X. The identity matrix is denoted by I - its dimensions are determined
by the context - and δj is its jth column vector.

We consider an undirected, connected, weighted graph G = {V, E ,W}, where V is the set of n
nodes, E is the set of edges, and W ∈ Rn×n is the weighted adjacency matrix. The entries of W
are nonnegative. We denote the graph Laplacian by L ∈ Rn×n. As said before, we assume that L
is real, symmetric, and positive semi-definite. For example, the matrix L can be the combinatorial
graph Laplacian L := D −W, or the normalised one L := I − D−1/2WD−1/2, where D ∈ Rn×n is the
diagonal degree matrix and I is the identity matrix [29]. The diagonal degree matrix D has entries
di :=

∑
i ̸=j Wij .

As the matrix L is real symmetric, there exists a set of orthonormal eigenvectors U ∈ Rn×n and
real eigenvalues λ1, . . . ,λn such that L = UΛU⊺, where Λ := diag(λ1, . . . ,λn) ∈ Rn×n. Furthermore,
semi-definite positivity of L implies that all eigenvalues are nonnegative. Without loss of generality,
we assume that λ1 ⩽ . . . ⩽ λn.

The matrix U is often viewed as the graph Fourier transform [2]. For any signal x ∈ Rn defined
on the nodes of the graph G, x̂ = U⊺x contains the Fourier coefficients of x ordered in increasing
frequencies. As explained before, it is thus natural to consider that a k-bandlimited (smooth) signal
x ∈ Rn on G with band-limit k > 0 is a signal that satisfies

x = Ukx̂
k

where x̂k ∈ Rk and

Uk := (u1, . . . ,uk) ∈ Rn×k,

i.e., Uk is the restriction of U to its first k vectors. This yields the following formal definition of a
k-bandlimited signal.

Definition 1.1 (k-bandlimited signal on G). A signal x ∈ Rn defined on the nodes of the graph G is
k-bandlimited with k ∈ N \ {0} if x ∈ span(Uk).

Note we use span(Uk) in our definition of k-bandlimited signals to handle the case where the
eigendecomposition is not unique. To avoid any ambiguity in the definition of k-bandlimited signals,
we assume that λk ̸= λk+1 for simplicity.

1.3. Outline

In Section 2, we detail our sampling strategies and provide sufficient sampling conditions that ensure
a stable embedding of k-bandlimited graph signals. We also prove that there always exists an optimal
sampling distribution that ensures an embedding of k-bandlimited signals for O(k log(k)) measure-
ments. In Section 3, we propose decoders able to recover k-bandlimited signals from their samples.
In Section 4, we explain how to obtain an estimation of the optimal sampling distribution quickly,
without partial diagonalisation of the Laplacian matrix. In Section 5, we conduct several experiments
on different graphs to test our methods. Finally, we conclude and discuss perspectives in Section 6.

2. Sampling k-bandlimited signals

In this section, we start by describing how we select a subset of the nodes to sample k-bandlimited
signals. Then, we prove that this sampling procedure stably embeds the set of k-bandlimited signals.
We describe how to reconstruct such signals from these measurements in Section 3.
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2.1. The sampling procedure

In order to select the subset of nodes that will be used for sampling, we need a probability distribution
P on {1, . . . , n}. This probability distribution is used as a sampling distribution. We represent it by
a vector p ∈ Rn. We assume that pi > 0 for all i = 1, . . . , n. We obviously have ∥p∥1 =

∑n
i=1 pi = 1.

We associate the matrix

P := diag(p) ∈ Rn×n

to p.
The subset of nodes Ω := {ω1, . . . , ωm} used for sampling is constructed by drawing independently

(with replacements) m indices from the set {1, . . . , n} according to the probability distribution p. We
thus have

P(ωj = i) = pi, ∀j ∈ {1, . . . ,m} and ∀i ∈ {1, . . . , n}.

For any signal x ∈ Rn defined on the nodes of the graph, its sampled version y ∈ Rm satisfies

yj := xωj , ∀j ∈ {1, . . . ,m}.

Note that we discuss the case of sampling without replacement in Section 2.3.
Let us pause for a moment and highlight few important facts. First, the sampling procedure allows

each node to be selected multiple times. The number of measurements m includes these duplications.
In practice, one can sample each selected node only once and add these duplications “artificially”
afterwards. Second, the set of nodes Ω needs to be selected only once to sample all k-bandlimited
signals on G. One does not need to construct a set Ω each time a signal has to be sampled. Third,
note that the sampling procedure is so far completely independent of the graph G. This is a non-
adaptive sampling strategy.

Let us define the sampling matrix M ∈ Rm×n. This matrix satisfies

Mij :=

{
1 if j = ωi

0 otherwise,
(1)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Note that y = Mx. In the next section, we show that,
with high probability, M embeds the set of k-bandlimited signals for a number of measurements m
essentially proportional to k log(k) times a parameter called the graph weighted coherence.

2.2. The space of k-bandlimited signals is stably embedded

Similarly to many compressed sensing results, the number of measurements required to stably sample
k-bandlimited signals will depend on a quantity, called the graph weighted coherence, that represents
how the energy of these signals spreads over the nodes. Before providing the formal definition of this
quantity, let us give an intuition of what it represents and why it is important.

Consider the signal δi ∈ Rn with value 1 at node i and 0 everywhere else. This signal has its energy
concentrated entirely at the ith node. Compute U⊺

kδi, i.e., the first k Fourier coefficients of δi. The
ratio

∥U⊺
kδi∥2

∥U⊺δi∥2
=

∥U⊺
kδi∥2

∥δi∥2
= ∥U⊺

kδi∥2

characterises how much the energy of δi is concentrated on the first k Fourier modes. This ratio varies
between 0 and 1. When it is equal to 1, this indicates that there exists k-bandlimited signals whose
energy is solely concentrated at the ith node; not sampling the ith node jeopardises the chance of
reconstructing these signals. When this ratio is equal to 0, then no k-bandlimited signal has a part of
its energy on the ith node; one can safely remove this node from the sampling set. We thus see that
the quality of our sampling method will depend on the interplay between the sampling distribution
p and the quantities ∥U⊺

kδi∥2 for i ∈ {1, . . . , n}. Ideally, we should have pi large wherever ∥U⊺
kδi∥2 is

large and pi small wherever ∥U⊺
kδi∥2 is small. The interplay between pi and ∥U⊺

kδi∥2 is characterised
by the graph weighted coherence.



Random sampling of bandlimited signals on graphs 5

Definition 2.1 (Graph weighted coherence). Let p ∈ Rn represent a sampling distribution on
{1, . . . , n}. The graph weighted coherence of order k for the pair (G,p) is

νkp := max
1⩽i⩽n

{
p
−1/2
i ∥U⊺

kδi∥2
}
.

Let us highlight two fundamental properties of νkp. First, we have

νkp ⩾
√
k.

Indeed, as the columns of Uk are normalised to 1, we have

k = ∥Uk∥2Frob =
n∑

i=1

∥U⊺
kδi∥

2

2
=

n∑
i=1

pi

∥U⊺
kδi∥

2

2

pi
⩽ max

1⩽i⩽n

{
∥U⊺

kδi∥
2

2

pi

}
·

n∑
i=1

pi = (νkp)
2.

Second, νkp is a quantity that depends solely on p and span(Uk). The choice of the basis for span(Uk)

does not matter in the definition of νkp. Indeed, it suffices to notice that ∥U⊺
kδi∥

2

2
= ∥Pk(δi)∥22, where

Pk(·) : Rn → Rn is the orthogonal projection onto span(Uk), whose definition is independent of the
choice of the basis of span(Uk). The graph weighted coherence is thus a characteristic of the interaction
between the signal model, i.e., span(Uk), and the sampling distribution p.

We are now ready to introduce our main theorem which shows thatm−1MP−1/2 satisfies a restricted
isometry property on the space of k-bandlimited signals.

Theorem 2.2 (Restricted isometry property). Let M be a random subsampling matrix constructed as
in (1) with the sampling distribution p. For any δ, ϵ ∈ (0, 1), with probability at least 1− ϵ,

(1− δ) ∥x∥22 ⩽ 1

m

∥∥∥MP−1/2 x
∥∥∥2
2
⩽ (1 + δ) ∥x∥22(2)

for all x ∈ span(Uk) provided that

m ⩾ 3

δ2
(νkp)

2 log

(
2k

ϵ

)
.(3)

Proof. See Appendix A. □
There are several important comments to make about the above theorem.

• First, this theorem shows that the matrix MP−1/2 embeds the set of k-bandlimited signals into

Rm. Indeed, for any x ̸= z ∈ span(Uk), we have
∥∥MP−1/2 (x− z)

∥∥2
2
⩾ m(1−δ) ∥x− z∥22 > 0,

as (x−z) ∈ span(Uk). The matrix MP−1/2 can thus be used to sample k-bandlimited signals.

• Second, we notice that MP−1/2 x = P
−1/2
Ω Mx where PΩ ∈ Rm×m is the diagonal matrix with

entries (PΩ)ii = pωi . Therefore, one just needs to measure Mx in practice; the re-weighting

by P
−1/2
Ω can be done off-line.

• Third, as (νkp)
2 ⩾ k, we need to sample at least k nodes. Note that k is also the minimum

number of measurements that one must take to hope to reconstruct x ∈ span(Uk).

The above theorem is quite similar to known compressed sensing results in bounded orthonormal
systems [30, 31]. The proof actually relies on the same tools as the ones used in compressed sensing.
However, in our case, the setting is simpler. Unlike in compressed sensing where the signal model is
a union of subspaces, the model here is a single known subspace. In the proof, we exploit this fact to
refine and tighten the sampling condition. In this simpler setting and thanks to our refined result, we
can propose a sampling procedure that is always optimal in terms of the number of measurements.
This technique consists in using variable density sampling [25–27].

In order to minimise the number of measurements, the idea is to choose a sampling distribution
that minimises νkp. Luckily, it occurs that it is always possible to reach the lower bound of νkp with
a proper choice of the sampling distribution. The sampling distribution p∗ ∈ Rn that minimises the
graph weighted coherence is

p∗
i :=

∥U⊺
kδi∥

2

2

k
, i = 1, . . . , n,(4)



6 G. PUY, N. TREMBLAY, R. GRIBONVAL, AND P. VANDERGHEYNST

for which (νkp∗)2 = k. The proof is simple. One just need to notice that
∑n

i=1 p
∗
i = k−1

∑n
i=1 ∥U

⊺
kδi∥

2

2
=

k−1 ∥Uk∥Frob = k−1k = 1 so that p∗ is a valid probability distribution. Finally, it is easy to check
that (νkp∗)2 = k. This yields the following corollary to Theorem 2.2.

Corollary 2.3. Let M be a random subsampling matrix constructed as in (1) with the sampling
distribution p∗ defined in (4). For any δ, ϵ ∈ (0, 1), with probability at least 1− ϵ,

(1− δ) ∥x∥22 ⩽ 1

m

∥∥∥MP−1/2 x
∥∥∥2
2
⩽ (1 + δ) ∥x∥22

for all x ∈ span(Uk) provided that

m ⩾ 3

δ2
k log

(
2k

ϵ

)
.

The sampling distribution p∗ is optimal in the sense that the number of measurements needed to
embed the set of k-bandlimited signals is essentially reduced to its minimum value. Note that, unlike
Theorem 2.2 where the sampling is non-adaptive, the sampling distribution is now adapted to the
structure of the graph and a priori requires the knowledge of a basis of span(Uk). We present a fast
method that does not require the computation of a basis of span(Uk) to estimate p∗ in Section 4.

2.3. Sampling without replacement

We have seen that the proposed sampling procedure allows one node to be sampled multiple times. In
the case of a uniform sampling distribution, we can solve the issue by considering a sampling of the
nodes without replacement and still prove that the set of k-bandlimited signals is stably embedded.
We denote by π ∈ Rn the uniform distribution on {1, . . . , n}, πi = 1/n for all i ∈ {1, . . . , n}.
Theorem 2.4. Let M be a random subsampling matrix constructed as in (1) with Ω built by drawing m
indices {ω1, . . . , ωm} from {1, . . . , n} uniformly at random without replacement. For any δ, ϵ ∈ (0, 1),
with probability at least 1− ϵ,

(1− δ) ∥x∥22 ⩽ n

m
∥Mx∥22 ⩽ (1 + δ) ∥x∥22

for all x ∈ span(Uk) provided that

m ⩾ 3

δ2
(νkπ)

2 log

(
2k

ϵ

)
.

Proof. See Appendix A. □
The attentive reader will notice that, unfortunately, the condition on m is identical to the case

where the sampling is done with replacement. This is because the theorem that we use to prove this
result is obtained by “coming back” to sampling with replacement. Yet, we believe that it is still
interesting to mention this result for applications where one wants to avoid any duplicated lines in
the sampling matrix M, which, for example, ensures that ∥M∥2 = 1.

In the general case of non-uniform distributions, we are unfortunately not aware of any result
allowing us to handle the case of a sampling without replacement. Yet it would be interesting to
study this scenario more carefully in the future as sampling without replacement seems more natural
for practical applications.

3. Signal recovery

In the last section, we proved that it is possible to embed the space of k-bandlimited signals into Rm

using a sparse matrix M ∈ Rm×n. We now have to design a procedure to estimate accurately any
x ∈ span(Uk) from its, possibly noisy, m samples. Let us consider that the samples y ∈ Rm satisfy

y = Mx+ n,

where n ∈ Rm models a noise. Note that n can be any vector Rm. We do not restrict our study to
a particular noise structure. The vector n can be used to represent, e.g., errors relative to the signal
model or correlated noise.
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3.1. Standard decoder

In a situation where one knows a basis of span(Uk), the standard method to estimate x from y is to
compute the best approximation to y from span(Uk), i.e., to solve

min
z∈span(Uk)

∥∥∥P−1/2
Ω (Mz − y)

∥∥∥
2
.(5)

Note that we introduced a weighting by the matrix P
−1/2
Ω in (5) to account for the fact that

m−1 P
−1/2
Ω M = m−1 MP−1/2 satisfies the RIP, not M alone. The following theorem proves that the

solution of (5) is a faithful estimation of x.

Theorem 3.1. Let Ω be a set of m indices selected independently from {1, . . . , n} using a sampling
distribution p ∈ Rn, and M be the sampling matrix associated to Ω (see (1)). Let ϵ, δ ∈ (0, 1) and
suppose that m satisfies (3). With probability at least 1 − ϵ, the following holds for all x ∈ span(Uk)
and all n ∈ Rm.

i) Let x∗ be the solution of Problem (5) with y = Mx+ n. Then,

∥x∗ − x∥2 ⩽ 2√
m (1− δ)

∥∥∥P−1/2
Ω n

∥∥∥
2
.(6)

ii) There exist particular vectors n0 ∈ Rm such that the solution x∗ of Problem (5) with y = Mx+n0

satisfies

∥x∗ − x∥2 ⩾ 1√
m (1 + δ)

∥∥∥P−1/2
Ω n0

∥∥∥
2
.(7)

Proof. See Appendix B. □

We notice that in the absence of noise x∗ = x, as desired. In the presence of noise, the upper

bound on the error between x∗ and x increases linearly with ∥P−1/2
Ω n∥2. For a uniform sampling, we

have ∥P−1/2
Ω n∥2 =

√
n ∥n∥2. For a non-uniform sampling, we may have ∥P−1/2

Ω n∥2 ≫
√
n ∥n∥2 for

some particular draws of Ω and noise vectors n. Indeed, some weights pωi might be arbitrarily close
to 0. Unfortunately, one cannot in general improve the upper bound in (6) as proved by the second
part of the theorem with (7). Non-uniform sampling can thus be very sensitive to noise unlike uniform
sampling. However, this is a worst case scenario. First, it is unlikely to draw an index ωi where pωi

is small by construction of the sampling procedure. Second,

E
∥∥∥P−1/2

Ω n
∥∥∥2
2
= n ∥n∥22 ,

so that ∥P−1/2
Ω n∥2 is not too large on average over the draw of Ω. Furthermore, in our numerical

experiments, we noticed that we have mini pi = 1/(α2 n), where α > 1 is a small constant1, for the

optimal sampling distributions p = p∗ obtained in practice. This yields ∥P−1/2
Ω n∥2 ⩽ α

√
n ∥n∥2,

which shows that non-uniform sampling is just slightly more sensitive to noise than uniform sampling
in practical settings, with the advantage of reducing the number of measurements. Non-uniform
sampling is thus still a beneficial solution.

We have seen a first method to estimate x from its measurements. This method has however a major
drawback: it requires the estimation of a basis of Uk, which can be computationally very expensive
for large graphs. To overcome this issue, we propose an alternative decoder which is computationally
much more efficient. This algorithm uses techniques developed to filter graph signal rapidly. We thus
briefly recall the principle of these filtering techniques.

1In the numerical experiments presented below, we have α smaller or equal to 3 in all cases tested with the optimal
sampling distribution for the graphs presented in Fig. 1.
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3.2. Fast filtering on graphs

A filter is represented by a function h : R → R in the Fourier (spectral) domain. The signal x filtered
by h is

xh := Udiag(ĥ)U⊺x ∈ Rn,

where ĥ = (h(λ1), . . . , h(λn))
⊺ ∈ Rn. Filtering thus consists in multiplying point by point the Fourier

transform of x with ĥ and then computing the inverse Fourier transform of the resulting signal.
According to the above definition, filtering a priori requires the knowledge of the matrix U. To

avoid the computation of U, one can approximate the function h by a polynomial

p(t) =

d∑
i=0

αi t
i

of degree d and compute xp, which will approximates xh. This computation can be done rapidly as
it only requires matrix-vector multiplications with L, which is sparse in most applications. Indeed,

xp = Udiag(p̂)U⊺x =
d∑

i=0

αi Udiag(λi
1, . . . ,λ

i
n)U

⊺x =
d∑

i=0

αi L
ix.

Furthermore, if the polynomial p is a linear combination of, e.g., Chebyshev polynomials, one can
use the recurrence relation between these polynomials to reduce the memory requirements for the
computation. We let the reader refer to [32] for more information on this fast filtering technique.

To simplify notations, for any polynomial function p(t) =
∑d

i=0 αi t
i and any matrix A ∈ Rn×n,

we define

p(A) :=
d∑

i=0

αi A
i.(8)

Remark that g(L) = U g(Λ)U⊺.

3.3. Efficient decoder

Instead of solving (5), we propose to estimate x by solving the following problem

min
z∈Rn

∥∥∥P−1/2
Ω (Mz − y)

∥∥∥2
2
+ γ z⊺g(L)z,(9)

where γ > 0 and g : R → R is a nonnegative and nondecreasing polynomial function. These assump-
tions on g implies that g(L) is positive semi-definite - hence (9) is convex - and that 0 ⩽ g(λ1) ⩽ . . . ⩽
g(λn).

The intuition behind this second decoder is quite simple. Consider, for simplicity, that g is the
identity. The regularisation term becomes z⊺Lz. Remember that a k-bandlimited signal is a signal
that lives in the span of the first k eigenvector of U, i.e., where the eigenvalues of L are the smallest.
The regularisation term satisfies z⊺Lz = (z⊺U)Λ(U⊺z), where Λ is the diagonal matrix containing the
eigenvalues of L. Therefore, this term penalises signals with energy concentrated at high frequencies
more than signals with energy concentrated at low frequencies. In other words, this regularisation
term favours the reconstruction of low-frequency signals, i.e., signals approximately bandlimited.
Notice also that one can recover the standard decoder defined in (5) by substituting the function
iλk

: R → R ∪ {+∞}, defined as

iλk
(t) :=

{
0 if t ∈ [0, λk],
+∞ otherwise,

for g in (9).
We argue that solving (9) is computationally efficient because L is sparse in most applications.

Therefore, any method solving (9) that requires only matrix-vector multiplications with g(L) can be
implemented efficiently, as it requires multiplications with L only (recall the definition of g(L) in (8)).
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Examples of such methods are the conjugate gradient method or any gradient descend methods. Let
us recall that one can find a solution to (9) by solving(

M⊺P−1
Ω M+ γ g(L)

)
z = M⊺P−1

Ω y.(10)

The next theorem bounds the error between the original signal x and the solution of (9).

Theorem 3.2. Let Ω be a set of m indices selected independently from {1, . . . , n} using a sampling
distribution p ∈ Rn, M be the sampling matrix associated to Ω (see (1)), and Mmax > 0 be a constant
such that

∥∥MP−1/2
∥∥
2
⩽ Mmax. Let ϵ, δ ∈ (0, 1) and suppose that m satisfies (3). With probability at

least 1 − ϵ, the following holds for all x ∈ span(Uk), all n ∈ Rn, all γ > 0, and all nonnegative and
nondecreasing polynomial functions g such that g(λk+1) > 0.

Let x∗ be the solution of (5) with y = Mx+ n. Then,

∥α∗ − x∥2 ⩽ 1√
m(1− δ)

[(
2 +

Mmax√
γg(λk+1)

)∥∥∥P−1/2
Ω n

∥∥∥
2

+

(
Mmax

√
g(λk)

g(λk+1)
+
√
γg(λk)

)
∥x∥2

]
,(11)

and

∥β∗∥2 ⩽ 1√
γg(λk+1)

∥∥∥P−1/2
Ω n

∥∥∥
2
+

√
g(λk)

g(λk+1)
∥x∥2 ,(12)

where α∗ := UkU
⊺
k x

∗ and β∗ := (I− UkU
⊺
k)x

∗.

Proof. See Appendix B. □
In the above theorem, α∗ is the orthogonal projection of x∗ onto span(Uk) and β∗ onto the

orthogonal complement of span(Uk). To obtain a bound on ∥x∗ − x∥2, one can simply use the triangle
inequality and the bounds (11) and (12).

In the absence of noise, we thus have

∥x∗ − x∥2 ⩽ 1√
m(1− δ)

(
Mmax

√
g(λk)

g(λk+1)
+
√

γg(λk)

)
∥x∥2 +

√
g(λk)

g(λk+1)
∥x∥2 .

If g(λk) = 0, we notice that we obtain a perfect reconstruction. Note that as g is supposed to be
nondecreasing and nonnegative, g(λk) = 0 implies that we also have g(λ1) = ... = g(λk−1) = 0. If
g(λk) ̸= 0, the above bound shows that we should choose γ as close as possible to2 0 and seek to
minimise the ratio g(λk)/g(λk+1) to minimise the upper bound on the reconstruction error. Notice
that if g(L) = Ll, with l ∈ N∗, then the ratio g(λk)/g(λk+1) decreases as l increases. Increasing the
power of L and taking γ sufficiently small to compensate the potential growth of g(λk) is thus a simple
solution to improve the reconstruction quality in the absence of noise.

In the presence of noise, for a fixed function g, the upper bound on the reconstruction error is

minimised for a value of γ proportional to ∥P−1/2
Ω n∥2/ ∥x∥2. To optimise the result further, one

should seek to have g(λk) as small as possible and g(λk+1) as large as possible.

4. Estimation of the optimal sampling distribution

In this section, we explain how to estimate the optimal sampling distribution p∗ efficiently. This

distribution is entirely defined by the values ∥U⊺
kδi∥

2

2
, i = 1, . . . , n (see (4)). In order to be able to deal

with large graphs and potentially large k, we want to avoid the computation of a basis of span(Uk)
to estimate this distribution. Instead, we take another route that consists in filtering a small number
of random signals. Note that the idea of filtering few random signals to estimate the number of
eigenvalues of a Hermitian matrix in a given interval is already proposed and studied in [33]. We use

2Notice that if y is in the range of M, then the solution of Problem (9) tends to the solution of
minz z⊺g(L)z s.t. y = Mz in the limit where γ → 0+.
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the same technique to estimate λk. In addition, we show that this technique can be used to estimate
p∗.

For this estimation, we will need to use low-pass filters. For any λ > 0, the filter ideal low-pass
filter bλ : R → R with cut-off frequency λ satisfies

bλ(t) =

{
1 if t ∈ [0, λ],
0 otherwise.

4.1. Principle of the estimation

We recall that our goal is to estimate ∥U⊺
kδi∥22 for all i ∈ {1, . . . , n}. To understand how our method

works, consider that λk is known for the moment. Let r ∈ Rn be a vector with independent random
entries that follow a standard normal distribution. By filtering r with bλk

, we obtain

rbλk
= U diag(λ1, . . . ,λk, 0, . . . , 0) U

⊺ r = UkU
⊺
k r.

The estimation of the optimal sampling distribution is based on the following property. The ith entry
of rbλk

is

(rbλk
)i = r⊺bλk

δi = r⊺UkU
⊺
kδi,

and the mean of (rbλk
)2i satisfies

E (rbλk
)2i = δ⊺i UkU

⊺
k E(rr⊺) UkU

⊺
kδi = δ⊺i UkU

⊺
kUkU

⊺
kδi = δ⊺i UkU

⊺
kδi = ∥U⊺

kδi∥
2

2
.

This shows that (rbλk
)2i is an unbiased estimation of ∥U⊺

kδi∥22, the quantity we want to evaluate. There-
fore, a possibility to estimate the optimal sampling distribution consists in filtering L random signals
r1, . . . , rL with the same distribution as r and average (r1bλk

)2i , . . . , (r
L
bλk

)2i for each i ∈ {1, . . . , n}.
The next theorem shows that if λk is known, then L ⩾ O(log(n)) random vectors are sufficient to
have an accurate estimation of ∥U⊺

kδi∥22.
In the theorem below, we consider a realistic scenario where we filter the signals with a polynomial

approximation of bλ. This theorem shows how this approximation affects the estimation of ∥U⊺
kδi∥22.

We denote the polynomial filter approximating bλ by cλ : R → R. It satisfies
cλ = bλ + êλ,(13)

where êλ : R → R models the approximation error. We define

Eλ := diag(êλ(λ1), . . . , êλ(λn)) ∈ Rn×n.

Theorem 4.1. Let r1, . . . , rL ∈ Rn be L independent zero-mean Gaussian random vectors with
covariance L−1 I. Denote by r1cλ , . . . , r

L
cλ

∈ Rn the signals r1, . . . , rL filtered by cλ with λ > 0. Let
j∗ be the largest integer such that λj∗ ⩽ λ. There exists an absolute constant C > 0 such for any
ϵ, δ ∈ (0, 1), with probability at least 1− ϵ, the filtered signals satisfy

(1− δ)
∣∣∣∥∥U⊺

j∗δi
∥∥
2
− ∥EλU

⊺δi∥2
∣∣∣2 ⩽

L∑
l=1

(rlcλ)
2
i ⩽ (1 + δ)

∣∣∣∥∥U⊺
j∗δi

∥∥
2
+ ∥EλU

⊺δi∥2
∣∣∣2 ,

for all i ∈ {1, . . . , n}, provided that

L ⩾ C

δ2
log

(
2n

ϵ

)
.

Proof. See Appendix C. □

The above theorem indicates that if λ ∈ [λk,λk+1) and ê is null, then
∑L

l=1 (rlcλk
)2i estimates

∥U⊺
kδi∥

2

2
with an error at most δ on each entry i ∈ {1, . . . , n}. Recalling that the optimal sampling

distribution has entries

p∗
i =

∥U⊺
kδi∥

2

2

k
=

∥U⊺
kδi∥

2

2∑n
i=1 ∥U

⊺
kδi∥

2

2

,
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we see that p̃ ∈ Rn with entries

p̃i :=

∑L
l=1 (rlcλk

)2i∑n
i=1

∑L
l=1 (rlcλk

)2i

approximates the optimal sampling distribution. If we know λk and λk+1, we can thus approximate
p∗. In order to complete the method, we now need a solution to estimate λj with j = k or j = k+1.

4.2. Estimating λk and λk+1

Let λ ∈ (0,λn). Theorem 4.1 shows that, with probability 1− ϵ,

(1− δ)

n∑
i=1

∥∥U⊺
j∗δi

∥∥2
2

⩽
n∑

i=1

L∑
l=1

(rlbλ)
2
i ⩽ (1 + δ)

n∑
i=1

∥∥U⊺
j∗δi

∥∥2
2
,

when using the filter bλ. Noticing that

n∑
i=1

∥∥U⊺
j∗δi

∥∥2
2
= ∥Uj∗∥2Frob = j∗,

as the columns of U are normalised, yields

(1− δ) j∗ ⩽
n∑

i=1

L∑
l=1

(rlbλ)
2
i ⩽ (1 + δ) j∗.

In other words, the total energy of the filtered signals is tightly concentrated around j∗, which is
the largest integer such that λj∗ ⩽ λ. Therefore, the total energy of the filtered signals provides an
estimation of the number of eigenvalues of L that are below λ.

Using this phenomenon, one can obtain, by dichotomy, an interval (λ, λ̄) such that k−1 eigenvalues
are below λ and k eigenvalues are below λ̄ and thus obtain an estimation of λk. The same procedure
can be used to estimate λk+1. Note that we cannot filter the signals using an ideal low-pass filter in
practice, so that an additional error will slightly perturb the estimation.

4.3. The complete algorithm

We now have all the tools to design an algorithm that estimates the optimal sampling distribution.
This is summarised in Algorithm 1. In practice, we noticed that using L = 2 log(n) signals is already
enough to obtain a reasonable approximation of the sampling distribution. We also only estimate λk

and do not estimate λk+1. Steps 3 to 10 of the algorithm concern the estimation of λk by dichotomy.
The estimated optimal sampling distribution p̃ ∈ Rn is defined in Step 10. Finally, we would like to
mention that a better estimation of λk and of the sampling distribution could be obtained by running
multiple times Algorithm 1 and averaging the results. In the following experiments, this algorithm is
run only once but already yields good results.

5. Experiments

In this section, we run several experiments to illustrate the above theoretical findings. First we show
how the sampling distribution affects the number of measurements required to ensure that the RIP
holds. Then, we show how the reconstruction quality is affected with the choice of g and γ in (9).

All our experiments are done using three different types of graph, all available in the GSP toolbox
[34] and presented in Fig. 1. We use a) different community-type graphs of size n = 1000, b) the graph
representing the Minnesota road network of size n = 2642, and c) the graph of the Stanford bunny
of size n = 2503. We use the combinatorial Laplacian in all experiments. All samplings are done in
the conditions of Theorem 2.2, i.e., with replacement. Finally, the reconstructions are obtained by
solving (10) using the mldivide function of Matlab. For the graphs and functions g considered, we
noticed that it was faster to use this function than solving (10) by conjugate gradient.
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Algorithm 1 Estimation of the optimal sampling distribution

Input: Precision parameter ε ∈ (0, 1), and bandlimit k.
1: Set L = 2 log(n) and draw L random vectors r1, . . . , rL ∈ Rn as in Theorem 4.1.
2: Estimate λn and set λ = 0, λ̄ = λn, λ = λn/2, and compute cλ that approximates the ideal

low-pass filter bλ.

3: while round
(∑n

i=1

∑L
l=1 (rlcλ)

2
i

)
̸= k and

∣∣λ− λ̄
∣∣ > ε · λ̄ do

4: if round
(∑n

i=1

∑L
l=1 (rlcλ)

2
i

)
⩾ k then

5: Set λ̄ = λ.
6: else
7: Set λ = λ.
8: end if
9: Set λ = (λ+ λ̄)/2, and compute cλ that approximates the ideal low-pass filter bλ.

10: end while
Output: Set p̃i =

(∑L
l=1 (rlcλ)

2
i

)
/
(∑n

i=1

∑L
l=1 (rlcλ)

2
i

)
.

Community graph Minnesota graph Bunny graph

Figure 1. The three different graphs used in the simulations.

5.1. Effect of the sampling distribution on m

In this first part, we study how the sampling distributions affects the minimum number of measure-
ments required to satisfy the RIP. All experiments are repeated for three different sampling distri-
butions: a) the uniform distribution π, b) the optimal distribution p∗, and c) the estimated optimal
distribution p̃ ∈ Rn computed using Algorithm 1.

5.1.1. Using community graphs

We conduct a first set of experiments using five types of community graph, denoted by C1, . . . , C5.
They all have 10 communities. To study the effect of the size of the communities on the sampling
distribution, we choose to build these graphs with 9 communities of (approximately) equal size and
reduce the size of last community:

• the graphs of type C1 have 10 communities of size 100;
• the graphs of type C2 have 1 community of size 50, 8 communities of size 105, and 1 community
of size 110;

• the graphs of type C3 have 1 community of size 25, 8 communities of size 108, and 1 community
of size 111;

• the graphs of type C4 have 1 community of size 17, 8 communities of size 109, and 1 community
of size 111;

• the graphs of type C5 have 1 community of size 13, 8 communities of size 109, and 1 community
of size 115.
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Uniform distribution π Optimal distribution p∗ Estimated distribution p̃
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Figure 2. Probability that δ10 is less than 0.995 as a function of m for 5 different types of community graph:
C1 in black, C2 in red, C3 in blue, C4 in green, C5 in orange. Left panel: the dashed vertical lines indicate the
value of 3 · (ν10

π )2 for each type of graph. Middle and right panels: the dashed vertical lines indicate the value
3 · (ν10

p∗)2 = 3 · 10.

For each pair of graph-type, j ∈ {1, . . . , 5}, and sampling distribution, p ∈ {π,p∗, e}, we generate
a graph of type Cj , compute U10 and the lower RIP constant

δ10 := 1− inf
x∈span(U10)

∥x∥2=1

{
1

m

∥∥∥MP−1/2x
∥∥∥2
2

}
,(14)

for different numbers of measurements m. Note that to compute δ10, one just needs to notice that

δ10 = 1− 1

m
λmin

(
U⊺
10P

−1/2M⊺MP−1/2U10

)
.

We compute δ10 for 500 independent draws of the matrix M. When conducting the experiments with
the estimated optimal distribution p̃, we re-estimate this distribution at each of the 500 trials.

We present in Fig. 2 the probability that δ10 is less than 0.995, estimated over the 500 trials, as
a function of m. Let m∗

j,p be the number of measurements required to reach a probability of, e.g.,
P(δ10 ⩽ 0.995) = 0.9 for the pair (j,p) of graph-type and sampling distribution. Theorem 2.2 predicts
that m∗

j,p scales linearly with (ν10p )2.

• For the uniform distribution π, the first figure from the left in Fig. 2 indicates the value of
(ν10π )2(j), j = 1, . . . , 5 for the five different types of graph. We have (ν10π )2(1) ⩽ . . . ⩽ (ν10π )2(5)
and m∗

1,π ⩽ m∗
2,π ⩽ . . . ⩽ m∗

5,π, in accordance with Theorem 2.2.

• For the optimal sampling distribution p∗, we have (ν10p∗)2 = 10. Therefore m∗
j,p∗ must be

identical for all graph-types, as observed in the second panel of Fig. 2.
• For the estimated optimal sampling distribution p̃, the last figure in Fig. 2 shows that the
performance is identical for all graph-types, as with p∗. Furthermore, we attained almost
the same performance with p̃ and p∗, confirming the quality of the estimation provided by
Algorithm 1

5.1.2. Using the Minnesota and bunny graphs

To confirm the results observed above, we repeat the same experiments but using two other graphs: the
Minnesota and the bunny graphs. For each graph, the experiments are performed for k-bandlimited
signals with band-limit 10 and 100, i.e., we compute δ10 and δ100 - defined as in (14) - with U10 and
U100, respectively.

We present in the first two panels of Fig. 3 the probability that δ10 is less than 0.995, estimated
over 500 draws of M, as a function of m. Similarly, we present in the last two panels of Fig. 3 the
probability that δ100 is less than 0.995 as a function of m.
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Minnesota - k = 10 Bunny - k = 10 Minnesota - k = 100 Bunny - k = 100

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

m

1 
−

 ε

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

m

1 
−

 ε

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

m

1 
−

 ε

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

m

1 
−

 ε

Figure 3. Probability that δk is less than 0.995 as a function of m. The curve in black indicates the result for
the uniform distribution. The curve in red indicates the result for the optimal distribution. The curve in blue
indicates the result for the estimated optimal distribution. The first two panels on the left show the results for
k = 10. The last two panels on the right show the results for k = 100.

We notice that at the band-limit k = 10 all distributions yield essentially the same result for both
graphs. The advantage of using the distributions p∗ or p̃ becomes obvious at k = 100; especially for
the bunny graph where we reach only a probability of 0.036 at m = 2000 with the uniform distribution,
whereas m = 600 measurements are sufficient to reach a probability 1 with p∗. Uniform sampling
is not working for the bunny graph at k = 100 because there exist few eigenmodes whose energy is
highly concentrated on few nodes. In other words, we have ∥U⊺

100δi∥2 ≈ 1 for few nodes i. Finally, we
notice again that the result obtained with p∗ and p̃ are almost identical.

5.1.3. Examples of optimal and estimated sampling distributions

For illustration, we present some examples of sampling distributions in Fig. 4 for three of the graphs
used above. The top panels in Fig. 4 show the optimal sampling distribution computed with Uk. The
bottom panels show the estimated sampling distribution obtained with Algorithm 1. Globally, we
notice that the estimated sampling distribution p̃ and the optimal one p∗ are quite similar.

5.2. Reconstruction of k-bandlimited signals

In this second part, we study experimentally the performance of the decoder (9). All experiments
are repeated for 3 different graphs: a community graph of type C5, the Minnesota graph and the
bunny graph. We consider the recovery of k-bandlimited signals with band-limit k = 10. We take
m = 200 measurements using the estimated optimal distribution p̃. The experiments are conducted
with and without noise on the measurements. In the presence of noise, the random noise vector n
follows a zero-mean Gaussian distribution3 of variance σ2. The values of σ used are {0, 1.5 · 10−3, 3.7 ·
10−3, 8.8 · 10−3, 2.1 · 10−2, 5.0 · 10−2}. The signals are reconstructed by solving (9) for different values
of the regularisation parameter γ and different functions g. For the community graph and the bunny
graph, the regularisation parameter γ varies between 10−3 and 102. For the Minnesota graph, it
varies between 10−1 and 1010. For each σ, 10 independent random signals of unit norm are drawn,
sampled and reconstructed using all possible pairs (γ, g). Then, we compute the mean reconstruction
errors4 ∥x∗ − x∥2, ∥α∗ − x∥2 and ∥β∗∥2 over these 10 signals. In our experiments, the distribution p̃
is re-estimated with Algorithm 1 each time a new signal x is drawn.

We present the mean reconstruction errors obtained in the absence of noise on the measurements
in Fig. 5. In this set of experiments, we reconstruct the signals using g(L) = L, then g(L) = L2, and
finally g(L) = L4. Before describing these results, we recall that the ratio g(λ10)/g(λ11) decreases as
the power of L increases. We observe that all reconstruction errors, ∥x∗ − x∥2, ∥α∗ − x∥2 and ∥β∗∥2

3For nodes sampled multiple times, the realisation of the noise is thus different each time the same node is sampled.
The noise vector n contains no duplicated entry.

4See Theorem 3.2 for the definition of α∗ and β∗.
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Community graph C5 - k = 10 Bunny graph - k = 100 Minnesota graph - k = 100
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Figure 4. Optimal and estimated optimal sampling distributions for three different graphs. Nodes in black are
sampled with a higher probability than nodes in white.

decrease when the ratio g(λk)/g(λk+1) in the range of small γ, as predicted by the upper bounds on
these errors in Theorem 3.2.

We present the mean reconstruction errors obtained in the presence of noise on the measurements
in Fig. 6. In this set of experiments, we reconstruct the signals using g(L) = L4. As expected the best
regularisation parameter γ increases with the noise level.

5.3. Illustration: sampling of a real image

We finish this experimental section with an example of image sampling using the developed theory.
For this illustration, we use the photo of Lac d’Emosson in Switzerland presented in Fig. 7(a)

This RGB image contains 4288× 2848 pixels. We divide this image into patches of 8× 8 pixels, thus
obtaining 536× 356 patches of 64 pixels per RGB channel. Let us denote each patch by qi,j,k ∈ R64

with i ∈ {1, . . . , 536}, j ∈ {1, . . . , 356}, and k ∈ {1, 2, 3}. The pair of indices (i, j) encodes the spatial
location of the patch and k encodes the color channel. Using these patches, we build the following
matrix

X :=

 q1,1,1 q1,2,1 . . . q2,1,1 . . . q536,356,1
q1,1,2 q1,2,2 . . . q2,1,2 . . . q536,356,2
q1,1,3 q1,2,3 . . . q2,1,3 . . . q536,356,3

 ∈ R192×n,

where n = 190816. Each column of X represents a color patch of the original image at a given position.
We continue by building a graph modelling the similarity between the columns of X. Let xi ∈ R192

be the ith column-vector of the matrix X. For each i ∈ {1, . . . , n}, we search for the 20 nearest
neighbours of xi among all other columns of X. Let xj ∈ R192 be a vector connected to xi. The
weight Wij of the weighted adjacency matrix W ∈ Rn×n satisfies

Wij := exp

(
−
∥xi − xj∥22

2σ2

)
,
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Figure 5. Mean reconstruction errors of 10-bandlimited signals as a function of γ. The simulations are
performed in the absence of noise. The black curves indicate the results with g(L) = L. The blue curves
indicate the results with g(L) = L2. The red curves indicate the results with g(L) = L4. The first, second and
third columns show the results for a community graph of type C5, the bunny graph, and the Minnesota graph,
respectively. The first, second and third rows show the mean reconstruction errors ∥x∗ − x∥2, ∥α

∗ − x∥2 and
∥β∗∥2, respectively.

where σ > 0 is the standard deviation of all Euclidean distances between pairs of connected columns/patches.
We then symmetrise the matrix W. Each column of X is thus connected to at least 20 other columns
after symmetrisation. We finish the construction of the graph by computing the combinatorial Lapla-
cian L ∈ Rn×n associated to Wij .

We sample X by measuring about 15% of its n columns: m = 28622 ≈ 0.15n. First, we estimate the
optimal sampling distribution p̃ for k = 9541 ≈ m/3 with Algorithm 1. It takes about 4 minutes to
compute p̃ using Matlab on a laptop with a 2,8 GHz Intel Core i7 and 16GB of RAM. In comparison, we
tried to compute p∗ exactly by computing U9541 but stopped Matlab after 30 minutes of computations.
The estimated sampling distribution is presented in Fig. 7(b). Then, we build the sampling matrix M
by drawing at random m independent indices from {1, . . . , n} according to p̃. Note that the effective
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Figure 6. Mean reconstruction error ∥x∗ − x∥2 of 10-bandlimited signals as a function of γ with g(L) = L4.
The simulations are performed in presence of noise. The standard deviation of the noise is 0.0015 (blue),
0.0037 (red), 0.0088 (black), 0.0210 (green), 0.0500 (cyan). The best reconstruction errors are indicated by
orange circles. The first, second and third columns show the results for a community graph of type C5, the
bunny graph, and the Minnesota graph, respectively.
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Figure 7. a) original image; b) estimated optimal sampling distribution p̃; c) sampled image using p̃; d)
sampled image using the uniform sampling distribution π. The sampled images are obtained using the same
number of measurements.

sampling rate, i.e., once the indices sampled multiple times are removed, is about 7.6%, only. The
sampled columns are denoted by Y ∈ Rm and satisfy Y = MX.

We present in Fig. 7(c) the sampled image, where all non-sampled pixels appear in black. We
remark that the regions where many patches are similar (sky, lake, snow) are very sparsely sampled.
This can be explained as follows. The patches in such a region being all similar, one can fill this
region by copying a single representative patch. In practice this is done via the Laplacian matrix,
which encodes the similarities between the patches, by solving (9).

We reconstruct the image by solving (9) for each column of Y with γ = 1 and g(L) = L. Recon-
structing the image takes about 3 minutes by solving (10) using the mldivide function of Matlab. We
show the reconstructed image in Fig. 8. One can notice that we obtain a very accurate reconstruction
of the original image. The SNR between the original and the reconstructed images is 27.76 dB. As a
comparison, we present in Fig. 8 the reconstructed image from, again, m = 28622 ≈ 0.15n measure-
ments but obtained using the uniform sampling distribution. The effective sampling ratio in this case
is about 14%. The associated sampled image is presented in Fig. 7(d). The SNR between the original
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Original Reconstructed (sampling with p̃) Reconstructed (sampling with π)

Figure 8. From left to right: original image; reconstructed image from the measurements obtained with p̃ (the
reconstruction SNR is 27.76 dB); reconstructed image from the measurements obtained with π (the reconstruc-
tion SNR is 27.10 dB).

and the reconstructed images is 27.10 dB. The estimated optimal sampling distribution p̃ allows us
to attain a better image quality with an effective sampling ratio almost twice smaller.

6. Conclusion and perspectives

We proposed two efficient sampling procedures for k-bandlimited signals defined on the nodes of a
graph G. The performance of these sampling techniques is governed by the graph weighted coherence,
which characterises the interaction between the sampling distribution and the localisation of the first
k Fourier modes over the nodes of G. For regular graph with non-localised Fourier modes and a
uniform sampling distribution, we proved that O(k log k) samples are sufficient to embed the set of
k-bandlimited signals. For arbitrary graphs, uniform sampling might perform very poorly. In such
cases, we proved that it is always possible to adapt the sampling distribution to the structure of the
graph and reach optimal sampling conditions. We designed an algorithm to estimate the optimal
sampling distribution rapidly. Finally, we proposed an efficient decoder that provides accurate and
stable reconstruction of k-bandlimited signals from their samples.

We believe that the sampling method developed in this work can be used to speed up computations
in multiple applications using graph models. Let us take the example of the fast robust PCA method
proposed in [35]. In this work, the authors consider the case where one has access to two graphs G1

and G2 that respectively model the similarities between the rows and the columns of a matrix X. In
this context, they propose an optimisation technique that provides a low-rank approximation of X. We
denote this low-rank approximation by X∗. The intuition is that the left singular vectors and the right
singular vectors of X∗ live respectively in the span of the first eigenvectors of L1 and L2, the Laplacians
associated to G1 and G2. Therefore, the singular vectors of X∗ can be drastically subsampled using
our sampling method. The low-rank matrix X∗ can be reconstructed from a subset of its rows and
columns. Instead of estimating X∗ from the entire matrix X, one could thus first reduce the dimension
of the problem by selecting a small subset of the rows and columns of X.

In semi-supervised learning, a small subset of nodes are labeled and the goal is to infer the label of
all nodes. Advances in sampling of graph signals give insight on which nodes should be preferentially
observed to infer the labels on the complete graphs. Similarly, in spectral graph clustering, cluster
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assignments are well approximated by k-bandlimited signals and can therefore be heavily subsampled.
This leaves the possibility to initially cluster a small subset of the nodes and infer the clustering
solution on the complete graphs afterwards.

Sensor networks provide other applications of our sampling methods. Indeed, if signals measured
by a network of sensors are smooth, one can deduce beforehand from the structure of the network
which sensors to sample in priority in an active sampling strategy, using the optimal or estimated
sampling distribution.

Appendix A - Proof of the theorems in Section 2

We start with the proof of Theorem 2.2. For this proof, we need the following result obtained by
Tropp in [36].

Lemma A.1 (Theorem 1.1, [36]). Consider a finite sequence {Xi} of independent, random, self-
adjoint, positive semi-definite matrices of dimension d× d. Assume that each random matrix satisfies

λmax(Xi) ⩽ R almost surely.

Define

µmin := λmin

(∑
i

EXi

)
and µmax := λmax

(∑
i

EXi

)
.

Then

P

{
λmin

(∑
i

Xi

)
⩽ (1− δ)µmin

}
⩽ d ·

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1], and

P

{
λmax

(∑
i

Xi

)
⩾ (1 + δ)µmax

}
⩽ d ·

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ⩾ 0.

We also need the following facts. For all δ ∈ [0, 1], we have[
e−δ

(1− δ)1−δ

]µmin/R

⩽ exp

(
−δ2µmin

3R

)
and

[
eδ

(1 + δ)1+δ

]µmax/R

⩽ exp

(
−δ2µmax

3R

)
.

Proof of Theorem 2.2. As the ith row-vector of MP−1/2Uk is δ⊺ωi
Uk/

√
pωi , we have

1

m
U⊺
kP

−1/2M⊺MP−1/2Uk =
m∑
i=1

(U⊺
kδωi)

(
δ⊺ωi

Uk

)
mpωi

.

Let us define

Xi :=
1

mpωi

U⊺
kδωiδ

⊺
ωi
Uk,

and

X :=

m∑
i=1

Xi = m−1 U⊺
kP

−1/2M⊺MP−1/2Uk.

The matrix X is thus a sum of m of independent, random, self-adjoint, positive semi-definite matrices.
We are in the setting of Lemma A.1. We continue by computing EXi and λmax(Xi).

The expected value of each Xi is

EXi = E

[
(U⊺

kδωi)
(
δ⊺ωi

Uk

)
mpωi

]
=

1

m
U⊺
k

(
n∑

i=1

pi
δiδ

⊺
i

pi

)
Uk =

1

m
U⊺
kUk =

1

m
I
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where I ∈ Rk×k is the identity matrix. Therefore,

µmin := λmin

(∑
i

EXi

)
= 1 and µmax := λmax

(∑
i

EXi

)
= 1.

Furthermore, for all i = 1, . . . , n, we have

λmax(Xi) = ∥Xi∥2 ⩽ max
1⩽j⩽n

∥∥∥∥∥ (U
⊺
kδj)

(
δ⊺j Uk

)
mpj

∥∥∥∥∥
2

=
1

m
max
1⩽j⩽n

{
∥U⊺

kδj∥
2

2

pj

}
=

(νkp)
2

m
.

Lemma A.1 yields, for any δ ∈ (0, 1),

P {λmin (X) ⩽ (1− δ)} ⩽ k ·
[

e−δ

(1− δ)1−δ

]m/(νk
p)

2

⩽ k exp

(
− δ2m

3 (νkp)
2

)
and

P {λmax (X) ⩾ (1 + δ)} ⩽ k ·
[

eδ

(1 + δ)1+δ

]m/(νk
p)

2

⩽ k exp

(
− δ2m

3 (νkp)
2

)
.

Therefore, for any δ ∈ (0, 1), we have, with probability at least 1− ϵ,

1− δ ⩽ λmin (X) and λmax (X) ⩽ 1 + δ(15)

provided that

m ⩾ 3

δ2
(νkp)

2 log

(
2k

ϵ

)
.

Noticing that (15) implies that

(1 + δ) ∥α∥22 ⩽
∥∥∥MP−1/2Ukα

∥∥∥2
2
⩽ (1 + δ) ∥α∥22 ,

for all α ∈ Rk, which is equivalent to

(1 + δ) ∥x∥22 ⩽
∥∥∥MP−1/2x

∥∥∥2
2
⩽ (1 + δ) ∥x∥22 ,

for all x ∈ span(Uk), terminates the proof. □

The proof of Theorem 2.4 is based on the following results, also obtained by Tropp.

Lemma A.2 (Theorem 2.2, [37]). Let X be a finite set of positive-semidefinite matrices of dimension
d× d, and suppose that

max
X∈X

λmax(X) ⩽ R.

Sample {X1, . . . ,Xl} uniformly at random from X without replacement. Compute

µmin := l · λmin (EX1) and µmax := l · λmax (EX1) .

Then

P

{
λmin

(∑
i

Xi

)
⩽ (1− δ)µmin

}
⩽ d ·

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1], and

P

{
λmax

(∑
i

Xi

)
⩾ (1 + δ)µmax

}
⩽ d ·

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ⩾ 0.

Using Lemma A.1, one can notice that the above probability bounds would be identical if the
matrices {X1, . . . ,Xl} were sampled uniformly at random from X with replacement. It is thus not
necessary to detail the complete proof which is entirely similar to the one of Theorem 2.2, at the
exception of the sampling procedure.
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Appendix B - Proof of the theorems in Section 3

Proof of Theorem 3.1. We recall that x∗ is a solution to (5). By optimality of x∗, we have∥∥∥P−1/2
Ω Mx∗ − P

−1/2
Ω y

∥∥∥
2
⩽
∥∥∥P−1/2

Ω Mz − P
−1/2
Ω y

∥∥∥
2

for any z ∈ span(Uk). In particular for z = x, we obtain∥∥∥P−1/2
Ω Mx∗ − P

−1/2
Ω y

∥∥∥
2
⩽
∥∥∥P−1/2

Ω Mx− P
−1/2
Ω y

∥∥∥
2
,

which yields ∥∥∥P−1/2
Ω Mx∗ − P

−1/2
Ω Mx− P

−1/2
Ω n

∥∥∥
2
⩽
∥∥∥P−1/2

Ω n
∥∥∥
2
.(16)

Then, the triangle inequality and (2) yields∥∥∥P−1/2
Ω M(x∗ − x)− P

−1/2
Ω n

∥∥∥
2
⩾
∥∥∥P−1/2

Ω M(x∗ − x)
∥∥∥− ∥∥∥P−1/2

Ω n
∥∥∥
2

=
∥∥∥MP−1/2(x∗ − x)

∥∥∥
2
−
∥∥∥P−1/2

Ω n
∥∥∥
2

⩾
√
m (1− δ) ∥x∗ − x∥2 −

∥∥∥P−1/2
Ω n

∥∥∥
2
.(17)

In the second step, we used the fact that MP−1/2 = P
−1/2
Ω M. Combining (16) and (17) directly yields

(6), the first bound in Theorem 3.1.
To prove the second bound, let us choose n0 = Mz0 with z0 ∈ span(Uk). Therefore, y = M(x+z0)

and x∗ = x+z0 is an obvious solution to (5) in this case. To finish the proof, we use (2) which yields

∥x∗ − x∥2 = ∥z0∥2 ⩾ 1√
m(1 + δ)

∥∥∥MP−1/2z0

∥∥∥
2
=

1√
m(1 + δ)

∥∥∥P−1/2
Ω Mz0

∥∥∥
2

=
1√

m(1 + δ)

∥∥∥P−1/2
Ω n0

∥∥∥
2
.

□

Proof of Theorem 3.2. As x∗ is a solution to (9), we have∥∥∥P−1/2
Ω (Mx∗ − y)

∥∥∥2
2
+ γ (x∗)⊺g(L)x∗ ⩽

∥∥∥P−1/2
Ω (Mz − y)

∥∥∥2
2
+ γ z⊺g(L)z,(18)

for all z ∈ Rn. We also have x∗ = α∗ +β∗ with α∗ ∈ span(Uk) and β∗ ∈ span(Ūk). Let us define the
matrix

Ūk := (uk+1, . . . ,un) ∈ Rn×(n−k).

Choosing z = x in (18) and using the facts that Ū⊺
kα

∗ = 0, U⊺
kβ

∗ = 0, Ū⊺
kx = 0, and that g(L) =

U g(L)U⊺, we obtain∥∥∥P−1/2
Ω (Mx∗ − y)

∥∥∥2
2
+ γ (U⊺

kα
∗)⊺ Gk (U⊺

kα
∗) + γ (Ū⊺

kβ
∗)⊺ Ḡk (Ū⊺

kβ
∗)

⩽
∥∥∥P−1/2

Ω n
∥∥∥2
2
+ γ (U⊺

kx)
⊺ Gk (U⊺

kx),

where

Gk := diag (g(λ1), . . . , g(λk)) ∈ Rk×k and Ḡk := diag (g(λk+1), . . . , g(λn)) ∈ R(n−k)×(n−k).

We deduce that∥∥∥P−1/2
Ω (Mx∗ − y)

∥∥∥2
2
+ γ g(λk+1) ∥β∗∥22 ⩽

∥∥∥P−1/2
Ω n

∥∥∥2
2
+ γ g(λk) ∥x∥22 ,
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where we used the fact that
∥∥Ū⊺

kβ
∗
∥∥
2
= ∥β∗∥2 and ∥U⊺

kx∥2 = ∥x∥2. As the left hand side of the last
inequality is a sum of two positive quantities, we also have∥∥∥P−1/2

Ω (Mx∗ − y)
∥∥∥
2

⩽
∥∥∥P−1/2

Ω n
∥∥∥
2
+
√
γg(λk) ∥x∥2 and(19) √

γg(λk+1) ∥β∗∥2 ⩽
∥∥∥P−1/2

Ω n
∥∥∥
2
+
√
γg(λk) ∥x∥2 .(20)

Inequality (20) proves (12), the second inquality in Theorem 3.2. It remains to prove (11). To prove
this inequality, we continue by using (2), which yields∥∥∥P−1/2

Ω (Mx∗ − y)
∥∥∥
2
=
∥∥∥P−1/2

Ω M(α∗ − x) + P
−1/2
Ω n+ P

−1/2
Ω Mβ∗

∥∥∥
2

⩾
∥∥∥P−1/2

Ω M(α∗ − x)
∥∥∥
2
−
∥∥∥P−1/2

Ω n
∥∥∥− ∥∥∥P−1/2

Ω Mβ∗
∥∥∥
2

=
∥∥∥MP−1/2(α∗ − x)

∥∥∥
2
−
∥∥∥P−1/2

Ω n
∥∥∥− ∥∥∥MP−1/2β∗

∥∥∥
2

⩾
√
m(1− δ) ∥α∗ − x∥2 −

∥∥∥P−1/2
Ω n

∥∥∥
2
−Mmax ∥β∗∥2 .(21)

Finally, combining (19), (20) and (21) gives

∥α∗ − x∥2 ⩽ 1√
m(1− δ)

(∥∥∥P−1/2
Ω (Mx∗ − y)

∥∥∥
2
+
∥∥∥P−1/2

Ω n
∥∥∥
2
+Mmax ∥β∗∥2

)
⩽ 1√

m(1− δ)

(∥∥∥P−1/2
Ω n

∥∥∥
2
+
√
γg(λk) ∥x∥2

+
∥∥∥P−1/2

Ω n
∥∥∥
2

+
Mmax

∥∥∥P−1/2
Ω n

∥∥∥
2√

γg(λk+1)
+Mmax

√
g(λk)

g(λk+1)
∥x∥2


⩽ 1√

m(1− δ)

(
2 +

Mmax√
γg(λk+1)

)∥∥∥P−1/2
Ω n

∥∥∥
2

+
1√

m(1− δ)

(
Mmax

√
g(λk)

g(λk+1)
+
√
γg(λk)

)
∥x∥2 .

This terminates the proof. □

Appendix C - Proof of the theorem in Section 4

We use the classical technique to prove the Johnson-Lindenstrauss lemma (see, e.g., [38]).

Proof. Each filtered signal rlĉλ , l ∈ {1, . . . , L}, satisfies

rlĉλ = UCλ U
⊺rl,

where Cλ := diag(ĉλ(λ1), . . . , ĉλ(λn)). Let i be fixed for the moment. We have

L∑
l=1

(rlĉλ)
2
i =

L∑
l=1

(δ⊺i UCλ U
⊺rl)2,

The expected value of this sum is ∥CλU
⊺δi∥22. Indeed,

E

[
L∑

l=1

(rlĉλ)
2
i

]
=

L∑
l=1

δ⊺i UCλ U
⊺ E

[
rl(rl)⊺

]
UCλU

⊺δi = L−1
L∑

l=1

δ⊺i UCλ U
⊺UCλU

⊺δi

= δ⊺i UC2
λU

⊺δi = ∥CλU
⊺δi∥22 .
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Let us define

Xi :=
L∑

l=1

[
(rlĉλ)

2
i − L−1 ∥CλU

⊺δi∥22
]
.

This is a sum of L independent centered random variables. Furthermore, as each rl is a zero-mean
Gaussian random vector with covariance matrix L−1 I, the variables (rlĉλ)i are subgaussian with sub-

gaussian bounded by C L−1/2 ∥CλU
⊺δi∥2, where C ⩾ 1 is an absolute constant. We let the reader refer

to, e.g., [39] for more information on the definition and properties of subgaussian random variables.
Using Lemma 5.14 and Remark 5.18 in [39], one can prove that each summand of X is a centered

subexponential random variable with subexponentinal norm bounded by 4C2 L−1 ∥CλU
⊺δi∥22. Corol-

lary 5.17 in [39] shows that there exists an absolute contant c > 0 such that

P (|Xi| ⩾ t L) ⩽ 2 exp

(
− cL t2

16C4 L−2 ∥CλU⊺δi∥42

)
for all t ∈ (0, 4C2 L−1 ∥CλU

⊺δi∥22), or, equivalently, that

P
(
|Xi| ⩾ δ ∥CλU

⊺δi∥22
)
⩽ 2 exp

(
−cL δ2

16C4

)
,

for all δ ∈ (0, 4C2).
Then, using the union bound, we obtain

P
(

max
i∈{1,...,n}

|Xi| ⩾ δ ∥CλU
⊺δi∥22

)
⩽ 2n exp

(
−cL δ2

16C4

)
.

This proves that, with probability at least 1− ϵ,

(1− δ) ∥CλU
⊺δi∥22 ⩽

L∑
l=1

(rlĉλ)
2
i ⩽ (1 + δ) ∥CλU

⊺δi∥22 ,

for all i ∈ {1, . . . , n}, provided that

L ⩾ 16C4

c δ2
log

(
2n

ϵ

)
.

To finish the the proof, one just needs to remark that

CλU
⊺δi = U⊺

j∗δi + EλU
⊺δi,

by definition of ĉλ (see (13)) and use the triangle inequality. □
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