3 research outputs found

    Semi supervised weighted maximum variance dimensionality reduction

    Get PDF
    In the recent years, we have huge amounts of data which we want to classify with minimal human intervention. Only few features from the data that is available might be useful in some scenarios. In those scenarios, the dimensionality reduction methods play a major role for extracting useful features. The two parameter weighted maximum variance (2P-WMV) is a generalized dimensionality reduction method of which principal component analysis (PCA) and maximum margin criterion (MMC) are special cases.. In this paper, we have extended the 2P-WMV approach from our previous work to a semi-supervised version. The objective of this work is specially to show how two parameter version of Weighted Maximum Variance (2P-WMV) performs in Semi-Supervised environment in comparison to the supervised learning. By making use of both labeled and unlabeled data, we present our method with experimental results on several datasets using various approaches

    Aco-based feature selection algorithm for classification

    Get PDF
    Dataset with a small number of records but big number of attributes represents a phenomenon called “curse of dimensionality”. The classification of this type of dataset requires Feature Selection (FS) methods for the extraction of useful information. The modified graph clustering ant colony optimisation (MGCACO) algorithm is an effective FS method that was developed based on grouping the highly correlated features. However, the MGCACO algorithm has three main drawbacks in producing a features subset because of its clustering method, parameter sensitivity, and the final subset determination. An enhanced graph clustering ant colony optimisation (EGCACO) algorithm is proposed to solve the three (3) MGCACO algorithm problems. The proposed improvement includes: (i) an ACO feature clustering method to obtain clusters of highly correlated features; (ii) an adaptive selection technique for subset construction from the clusters of features; and (iii) a genetic-based method for producing the final subset of features. The ACO feature clustering method utilises the ability of various mechanisms such as intensification and diversification for local and global optimisation to provide highly correlated features. The adaptive technique for ant selection enables the parameter to adaptively change based on the feedback of the search space. The genetic method determines the final subset, automatically, based on the crossover and subset quality calculation. The performance of the proposed algorithm was evaluated on 18 benchmark datasets from the University California Irvine (UCI) repository and nine (9) deoxyribonucleic acid (DNA) microarray datasets against 15 benchmark metaheuristic algorithms. The experimental results of the EGCACO algorithm on the UCI dataset are superior to other benchmark optimisation algorithms in terms of the number of selected features for 16 out of the 18 UCI datasets (88.89%) and the best in eight (8) (44.47%) of the datasets for classification accuracy. Further, experiments on the nine (9) DNA microarray datasets showed that the EGCACO algorithm is superior than the benchmark algorithms in terms of classification accuracy (first rank) for seven (7) datasets (77.78%) and demonstrates the lowest number of selected features in six (6) datasets (66.67%). The proposed EGCACO algorithm can be utilised for FS in DNA microarray classification tasks that involve large dataset size in various application domains

    Laplacian linear discriminant analysis approach to unsupervised feature selection.

    Get PDF
    Until recently, numerous feature selection techniques have been proposed and found wide applications in genomics and proteomics. For instance, feature/gene selection has proven to be useful for biomarker discovery from microarray and mass spectrometry data. While supervised feature selection has been explored extensively, there are only a few unsupervised methods that can be applied to exploratory data analysis. In this paper, we address the problem of unsupervised feature selection. First, we extend Laplacian linear discriminant analysis (LLDA) to unsupervised cases. Second, we propose a novel algorithm for computing LLDA, which is efficient in the case of high dimensionality and small sample size as in microarray data. Finally, an unsupervised feature selection method, called LLDA-based Recursive Feature Elimination (LLDA-RFE), is proposed. We apply LLDA-RFE to several public data sets of cancer microarrays and compare its performance with those of Laplacian score and SVD-entropy, two state-of-the-art unsupervised methods, and with that of Fisher score, a supervised filter method. Our results demonstrate that LLDA-RFE outperforms Laplacian score and shows favorable performance against SVD-entropy. It performs even better than Fisher score for some of the data sets, despite the fact that LLDA-RFE is fully unsupervised
    corecore