3,174 research outputs found

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods

    Statistical Inference for Time-changed Brownian Motion Credit Risk Models

    Full text link
    We consider structural credit modeling in the important special case where the log-leverage ratio of the firm is a time-changed Brownian motion (TCBM) with the time-change taken to be an independent increasing process. Following the approach of Black and Cox, one defines the time of default to be the first passage time for the log-leverage ratio to cross the level zero. Rather than adopt the classical notion of first passage, with its associated numerical challenges, we accept an alternative notion applicable for TCBMs called "first passage of the second kind". We demonstrate how statistical inference can be efficiently implemented in this new class of models. This allows us to compare the performance of two versions of TCBMs, the variance gamma (VG) model and the exponential jump model (EXP), to the Black-Cox model. When applied to a 4.5 year long data set of weekly credit default swap (CDS) quotes for Ford Motor Co, the conclusion is that the two TCBM models, with essentially one extra parameter, can significantly outperform the classic Black-Cox model.Comment: 21 pages, 3 figures, 2 table

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in ReLU Networks

    Full text link
    We consider the problem of performing Bayesian inference for logistic regression using appropriate extensions of the ensemble Kalman filter. Two interacting particle systems are proposed that sample from an approximate posterior and prove quantitative convergence rates of these interacting particle systems to their mean-field limit as the number of particles tends to infinity. Furthermore, we apply these techniques and examine their effectiveness as methods of Bayesian approximation for quantifying predictive uncertainty in ReLU networks
    • …
    corecore