125 research outputs found

    On the Unification of Megamodels

    Get PDF
    Through the more and more widespread application of model-driven engineering (MDE) and the increasing diversity in applied modeling paradigms within single projects, there is an increasing need to capture not only models in isolation but also their relations.This paper is a survey on techniques capturing such relations, such as megamodels or macromodels, based on existing scientific literature. Therefore, we consider various definitions of these techniques. We further examine characteristics of the different techniques.We will propose a unified core definition of a megamodel that captures the core properties of megamodels and which can be extended to the needs of the different applications of megamodels.Finally, we give an outlook on arising application areas for megamodels

    Language Support for Megamodel Renarration

    Get PDF
    Megamodels may be difficult to understand because they reside at a high level of abstraction and they are graph-like structures that do not immediately provide means of order and decomposition as needed for successive examination and comprehension. To improve megamodel comprehension, we introduce modeling features for the recreation, in fact, renarration of megamodels. Our approach relies on certain operators for extending, instantiating, and otherwise modifying megamodels. We illustrate the approach in the context of megamodeling for Object/XML mapping (also known as XML data binding)

    Megamodelling and Etymology

    Get PDF
    Is a model of a model, a metamodel? Is the relational model a metamodel? Is it a model? What is a component metamodel? Is it a model of a component model? The word MODEL is subject to a lot of debates in Model Driven Engineering. Add the notion of metamodel on top of it and you will just enter what some people call the Meta-muddle. Recently megamodels have been proposed to avoid the meta-muddle. This approach is very promising but it does not solve however the primary problem. That is, even a simple use of the word Model could lead to misunderstanding and confusion. This paper tackles this problem from its very source: the polysemic nature of the word MODEL. The evolution and semantic variations of the word MODEL are modelled from many different perspectives. This papers tells how the prefix MED in indo-european has lead, five millenniums after, to the acronym MDE, and this via the word MODEL. Based on an extensive study of encyclopedias, dictionaries, thesauri, and etymological sources, it is shown that the many senses of the word MODEL can be clustered into four groups, namely model-as-representation, model-as-example, model-as-type, and model-as-mold. All these groups are fundamental to understand the real nature of Model Driven Engineering. Megamodels and Etymology are indeed keys to avoid the Meta-muddle.on

    Model Driven Management of Complex Systems: Implementing the Macroscope\u27s vision

    Get PDF
    Several years ago, first generation model driven engineering (MDE) tools focused on generating code from high-level platform-independent abstract descriptions. Since then, the target scope of MDE has much broadened and now addresses for example testing, verification, measurement, tool interoperability, software evolution, and many more hard issues in software engineering. In this paper we study the applicability of MDE to another difficult problem: the management of complex systems. We show how the basic properties of MDE may be of significant help in this context and we characterize and extend MDE by the concept of a "megamodel", i.e. a model which elements may themselves be models. We sketch the basic characteristics of a tool for handling megamodels and we apply it to the example of the Eclipse.org ecosystem, chosen here as a representative illustration of a complex system. The paper finally discusses how the proposed original approach and tools may impact the construction and maintenance of computer based complex systems

    Model-Driven Process Enactment for NFV Systems with MAPLE

    Full text link
    The Network Functions Virtualization (NFV) advent is making way for the rapid deployment of network services (NS) for telecoms. Automation of network service management is one of the main challenges currently faced by the NFV community. Explicitly defining a process for the design, deployment, and management of network services and automating it is therefore highly desirable and beneficial for NFV systems. The use of model-driven orchestration means has been advocated in this context. As part of this effort to support automated process execution, we propose a process enactment approach with NFV systems as the target application domain. Our process enactment approach is megamodel-based. An integrated process modelling and enactment environment, MAPLE, has been built into Papyrus for this purpose. Process modelling is carried out with UML activity diagrams. The enactment environment transforms the process model to a model transformation chain, and then orchestrates it with the use of megamodels. In this paper we present our approach and environment MAPLE, its recent extension with new features as well as application to an enriched case study consisting of NS design and onboarding process.Comment: 27 pages, 14 figures, 1 tabl
    • …
    corecore