41,802 research outputs found

    Improving Multi-Scale Aggregation Using Feature Pyramid Module for Robust Speaker Verification of Variable-Duration Utterances

    Full text link
    Currently, the most widely used approach for speaker verification is the deep speaker embedding learning. In this approach, we obtain a speaker embedding vector by pooling single-scale features that are extracted from the last layer of a speaker feature extractor. Multi-scale aggregation (MSA), which utilizes multi-scale features from different layers of the feature extractor, has recently been introduced and shows superior performance for variable-duration utterances. To increase the robustness dealing with utterances of arbitrary duration, this paper improves the MSA by using a feature pyramid module. The module enhances speaker-discriminative information of features from multiple layers via a top-down pathway and lateral connections. We extract speaker embeddings using the enhanced features that contain rich speaker information with different time scales. Experiments on the VoxCeleb dataset show that the proposed module improves previous MSA methods with a smaller number of parameters. It also achieves better performance than state-of-the-art approaches for both short and long utterances.Comment: Accepted to Interspeech 202

    Bringing Structure into Summaries: Crowdsourcing a Benchmark Corpus of Concept Maps

    Full text link
    Concept maps can be used to concisely represent important information and bring structure into large document collections. Therefore, we study a variant of multi-document summarization that produces summaries in the form of concept maps. However, suitable evaluation datasets for this task are currently missing. To close this gap, we present a newly created corpus of concept maps that summarize heterogeneous collections of web documents on educational topics. It was created using a novel crowdsourcing approach that allows us to efficiently determine important elements in large document collections. We release the corpus along with a baseline system and proposed evaluation protocol to enable further research on this variant of summarization.Comment: Published at EMNLP 201

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Self-Adaptive Hierarchical Sentence Model

    Full text link
    The ability to accurately model a sentence at varying stages (e.g., word-phrase-sentence) plays a central role in natural language processing. As an effort towards this goal we propose a self-adaptive hierarchical sentence model (AdaSent). AdaSent effectively forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments. We design a competitive mechanism (through gating networks) to allow the representations of the same sentence to be engaged in a particular learning task (e.g., classification), therefore effectively mitigating the gradient vanishing problem persistent in other recursive models. Both qualitative and quantitative analysis shows that AdaSent can automatically form and select the representations suitable for the task at hand during training, yielding superior classification performance over competitor models on 5 benchmark data sets.Comment: 8 pages, 7 figures, accepted as a full paper at IJCAI 201

    Efficient Analysis of Complex Diagrams using Constraint-Based Parsing

    Full text link
    This paper describes substantial advances in the analysis (parsing) of diagrams using constraint grammars. The addition of set types to the grammar and spatial indexing of the data make it possible to efficiently parse real diagrams of substantial complexity. The system is probably the first to demonstrate efficient diagram parsing using grammars that easily be retargeted to other domains. The work assumes that the diagrams are available as a flat collection of graphics primitives: lines, polygons, circles, Bezier curves and text. This is appropriate for future electronic documents or for vectorized diagrams converted from scanned images. The classes of diagrams that we have analyzed include x,y data graphs and genetic diagrams drawn from the biological literature, as well as finite state automata diagrams (states and arcs). As an example, parsing a four-part data graph composed of 133 primitives required 35 sec using Macintosh Common Lisp on a Macintosh Quadra 700.Comment: 9 pages, Postscript, no fonts, compressed, uuencoded. Composed in MSWord 5.1a for the Mac. To appear in ICDAR '95. Other versions at ftp://ftp.ccs.neu.edu/pub/people/futrell
    corecore