2,020,286 research outputs found

    Learning Language Games through Interaction

    Full text link
    We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players.Comment: 11 pages, ACL 201

    How nouns and verbs differentially affect the behavior of artificial organisms

    Get PDF
    This paper presents an Artificial Life and Neural Network (ALNN) model for the evolution of syntax. The simulation methodology provides a unifying approach for the study of the evolution of language and its interaction with other behavioral and neural factors. The model uses an object manipulation task to simulate the evolution of language based on a simple verb-noun rule. The analyses of results focus on the interaction between language and other non-linguistic abilities, and on the neural control of linguistic abilities. The model shows that the beneficial effects of language on non-linguistic behavior are explained by the emergence of distinct internal representation patterns for the processing of verbs and nouns

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Improving Natural Language Interaction with Robots Using Advice

    Full text link
    Over the last few years, there has been growing interest in learning models for physically grounded language understanding tasks, such as the popular blocks world domain. These works typically view this problem as a single-step process, in which a human operator gives an instruction and an automated agent is evaluated on its ability to execute it. In this paper we take the first step towards increasing the bandwidth of this interaction, and suggest a protocol for including advice, high-level observations about the task, which can help constrain the agent's prediction. We evaluate our approach on the blocks world task, and show that even simple advice can help lead to significant performance improvements. To help reduce the effort involved in supplying the advice, we also explore model self-generated advice which can still improve results.Comment: Accepted as a short paper at NAACL 2019 (8 pages

    Language Interaction and Quality Issues: An Exploratory Study

    Get PDF
    Most software systems are complex and often composed of a large number of artifacts. To realize each different artifacts specific techniques are used resorting on different abstractions, languages and tools. Successful composition of different elements requires coherence among them. Unfortunately constraints between artifacts written in different languages are usually not formally expressed neither checked by supporting tools; as consequence they can be a source of problems. In this paper we explore the role of the relations between artifacts written in different languages by means of a case study on the Hadoop open source project. We present the problem introducing the related terminology, we quantify the phenomenon and investigate the relation with defect pronenes

    KLAIM: A Kernel Language for Agents Interaction and Mobility

    Get PDF
    We investigate the issue of designing a kernel programming language for mobile computing and describe KLAIM, a language that supports a programming paradigm where processes, like data, can be moved from one computing environment to another. The language consists of a core Linda with multiple tuple spaces and of a set of operators for building processes. KLAIM naturally supports programming with explicit localities. Localities are first-class data (they can be manipulated like any other data), but the language provides coordination mechanisms to control the interaction protocols among located processes. The formal operational semantics is useful for discussing the design of the language and provides guidelines for implementations. KLAIM is equipped with a type system that statically checks access rights violations of mobile agents. Types are used to describe the intentions (read, write, execute, etc.) of processes in relation to the various localities. The type system is used to determine the operations that processes want to perform at each locality, and to check whether they comply with the declared intentions and whether they have the necessary rights to perform the intended operations at the specific localities. Via a series of examples, we show that many mobile code programming paradigms can be naturally implemented in our kernel language. We also present a prototype implementaton of KLAIM in Java
    corecore