3,964 research outputs found

    A survey on motion prediction and risk assessment for intelligent vehicles

    Get PDF
    International audienceWith the objective to improve road safety, the automotive industry is moving toward more โ€œintelligentโ€ vehicles. One of the major challenges is to detect dangerous situations and react accordingly in order to avoid or mitigate accidents. This requires predicting the likely evolution of the current traffic situation, and assessing how dangerous that future situation might be. This paper is a survey of existing methods for motion prediction and risk assessment for intelligent vehicles. The proposed classification is based on the semantics used to define motion and risk. We point out the tradeoff between model completeness and real-time constraints, and the fact that the choice of a risk assessment method is influenced by the selected motion model

    Nachweislich sichere Bewegungsplanung fรผr autonome Fahrzeuge durch Echtzeitverifikation

    Get PDF
    This thesis introduces fail-safe motion planning as the first approach to guarantee legal safety of autonomous vehicles in arbitrary traffic situations. The proposed safety layer verifies whether intended trajectories comply with legal safety and provides fail-safe trajectories when intended trajectories result in safety-critical situations. The presented results indicate that the use of fail-safe motion planning can drastically reduce the number of traffic accidents.Die vorliegende Arbeit fรผhrt ein neuartiges Verifikationsverfahren ein, mit dessen Hilfe zum ersten Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen gewรคhrleistet werden kann. Das Verifikationsverfahren รผberprรผft, ob geplante Trajektorien sicher sind und generiert Rรผckfalltrajektorien falls diese zu einer unsicheren Situation fรผhren. Die Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deutlichen Reduktion von Verkehrsunfรคllen fรผhrt

    Safety of autonomous vehicles: A survey on Model-based vs. AI-based approaches

    Full text link
    The growing advancements in Autonomous Vehicles (AVs) have emphasized the critical need to prioritize the absolute safety of AV maneuvers, especially in dynamic and unpredictable environments or situations. This objective becomes even more challenging due to the uniqueness of every traffic situation/condition. To cope with all these very constrained and complex configurations, AVs must have appropriate control architectures with reliable and real-time Risk Assessment and Management Strategies (RAMS). These targeted RAMS must lead to reduce drastically the navigation risks. However, the lack of safety guarantees proves, which is one of the key challenges to be addressed, limit drastically the ambition to introduce more broadly AVs on our roads and restrict the use of AVs to very limited use cases. Therefore, the focus and the ambition of this paper is to survey research on autonomous vehicles while focusing on the important topic of safety guarantee of AVs. For this purpose, it is proposed to review research on relevant methods and concepts defining an overall control architecture for AVs, with an emphasis on the safety assessment and decision-making systems composing these architectures. Moreover, it is intended through this reviewing process to highlight researches that use either model-based methods or AI-based approaches. This is performed while emphasizing the strengths and weaknesses of each methodology and investigating the research that proposes a comprehensive multi-modal design that combines model-based and AI approaches. This paper ends with discussions on the methods used to guarantee the safety of AVs namely: safety verification techniques and the standardization/generalization of safety frameworks

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manรถverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und fรผhren zu einer unvollstรคndigen oder fehlinterpretierten Umfeldreprรคsentation. Dadurch weisen Bewegungsplaner in vielen Fรคllen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfรคhigkeit des Fahrzeugs kompensieren. Diese Arbeit prรคsentiert zuerst eine ausgiebige Analyse รผber die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. AnschlieรŸend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewรคhrleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelรถst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lรถsung mit Stichproben angenรคhert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manรถveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschrรคnkten Rรผckfalloption gewรคhrleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen fรผhren, die eine hรถhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben fรผr das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuitรคt in der Reward-Struktur fรผr die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern groรŸe Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art

    Get PDF
    The large-scale deployment of automated vehicles on public roads has the potential to vastly change the transportation modalities of today's society. Although this pursuit has been initiated decades ago, there still exist open challenges in reliably ensuring that such vehicles operate safely in open contexts. While functional safety is a well-established concept, the question of measuring the behavioral safety of a vehicle remains subject to research. One way to both objectively and computationally analyze traffic conflicts is the development and utilization of so-called criticality metrics. Contemporary approaches have leveraged the potential of criticality metrics in various applications related to automated driving, e.g. for computationally assessing the dynamic risk or filtering large data sets to build scenario catalogs. As a prerequisite to systematically choose adequate criticality metrics for such applications, we extensively review the state of the art of criticality metrics, their properties, and their applications in the context of automated driving. Based on this review, we propose a suitability analysis as a methodical tool to be used by practitioners. Both the proposed method and the state of the art review can then be harnessed to select well-suited measurement tools that cover an application's requirements, as demonstrated by an exemplary execution of the analysis. Ultimately, efficient, valid, and reliable measurements of an automated vehicle's safety performance are a key requirement for demonstrating its trustworthiness

    ๊ตํ†ต์•ฝ์ž ๋Œ€์ƒ ๊ฐ•๊ฑด ๋น„์ƒ์ œ๋™์žฅ์น˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2017. 8. ์ด๊ฒฝ์ˆ˜.๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตํ†ต์•ฝ์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜๋Š” ์ž๋™๋น„์ƒ์ œ๋™ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ์ง„ํ–‰๋œ ์—ฐ๊ตฌ์ด๋‹ค. ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜๋ž€ ์„ผ์„œ๋กœ๋ถ€ํ„ฐ ์–ป์€ ํ™˜๊ฒฝ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์šด์ „์ž๊ฐ€ ์˜ˆ์ƒํ•˜์ง€ ๋ชปํ•œ ์‚ฌ๊ณ ๋ฅผ ํšŒํ”ผํ•˜๊ฑฐ๋‚˜ ์‚ฌ๊ณ ์˜ ํ”ผํ•ด๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ฐจ๋Ÿ‰์„ ์ œ๋™ํ•ด์ฃผ๋Š” ์žฅ์น˜์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜๊ฐ€ ์ ์ฐจ ์–‘์‚ฐ๋˜๊ณ  ๋ณด๊ธ‰๋˜๊ธฐ ์‹œ์ž‘ํ•œ ์ดํ›„ ์‚ฌ๋žŒ๋“ค์€ ์ด๋Ÿฌํ•œ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตํ†ต ์•ฝ์ž์™€ ๊ด€๋ จ๋œ ์‚ฌ๊ณ ๊นŒ์ง€ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๋“ค์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ๊ตํ†ต ์•ฝ์ž๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณดํ–‰์ž, ์ž์ „๊ฑฐ ๋“ฑ์˜ ์›๋™๊ธฐ๋ฅผ ์žฅ์ฐฉํ•˜์ง€ ์•Š์€ ๋„๋กœ ์‚ฌ์šฉ์ž๋กœ ์ •์˜๋œ๋‹ค. ๊ตํ†ต ์•ฝ์ž๋Š” ๋น„๋ก ๊ทธ ์†๋„๊ฐ€ ์ฐจ๋Ÿ‰์— ๋น„ํ•ด ๋Š๋ฆฌ์ง€๋งŒ, ์‹ค์ œ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ๊ทธ ํ”ผํ•ด๊ฐ€ ์ปค์งˆ ์šฐ๋ ค๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๊ตํ†ต ์•ฝ์ž์™€ ๊ด€๋ จ๋œ ์‚ฌ๊ณ ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค. ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์ด์ „์— ์œ„ํ—˜์„ ์ธ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž์ฐจ๋Ÿ‰ ๋ฐ ๋Œ€์ƒ ๊ตํ†ต ์•ฝ์ž์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ž์ฐจ๋Ÿ‰ ๋ฐ ๊ตํ†ต ์•ฝ์ž์˜ ๊ฑฐ๋™์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ์ด ํ•„์š”ํ•˜๋‹ค. ์ฐจ๋Ÿ‰์˜ ๊ฒฝ์šฐ ์šด์ „์ž๊ฐ€ ์‚ฌ๊ณ ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹ค์ œ๋กœ ์šด์ „์ž๊ฐ€ ์‚ฌ๊ณ ๋ฅผ ํšŒํ”ผํ•  ๋•Œ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ํšŒํ”ผ ๊ฑฐ๋™์— ๋Œ€ํ•œ ๋ชจ์‚ฌ ์—ญ์‹œ ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์ž์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™์€ ๋“ฑ๊ฐ€์†๋„ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ‘œํ˜„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตํ†ต ์•ฝ์ž์˜ ๊ฒฝ์šฐ ๋ณดํ–‰์ž์™€ ์ž์ „๊ฑฐ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€์ƒ ๊ตํ†ต ์•ฝ์ž์˜ ์ข…๋ฅ˜ ๊ตฌ๋ถ„ ์—†์ด ์•ˆ์ „ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณดํ–‰์ž ๋ฐ ์ž์ „๊ฑฐ์˜ ๊ฑฐ๋™์€ ๋™์ผํ•œ ๋“ฑ์† ์ง์„  ์šด๋™ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ‘œํ˜„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์˜ˆ์ธก๋œ ์ •๋ณด๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์šด์ „์ž๊ฐ€ ์‚ฌ๊ณ ๋ฅผ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํŒ๋‹จํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋งŒ์•ฝ ์šด์ „์ž๊ฐ€ ์‚ฌ๊ณ ๋ฅผ ํšŒํ”ผํ•˜๊ณ ์ž ํ•  ๋•Œ ์ผ์ • ์ˆ˜์ค€์˜ ์•ˆ์ „๊ฑฐ๋ฆฌ๋ฅผ ํ™•๋ณดํ•˜์ง€ ๋ชปํ•  ๊ฒฝ์šฐ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜๊ฐ€ ์ž‘๋™ํ•˜์—ฌ ์ฐจ๋Ÿ‰์„ ์ œ๋™ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ด ๋•Œ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜์˜ ๊ฐ•๊ฑด ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ธก์ • ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ ๋ฐ ์ •๋ณด ์˜ˆ์ธก ์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์•ˆ์ „ ๊ฑฐ๋ฆฌ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ๊ฐœ๋ฐœ๋œ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ฐจ๋Ÿ‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํˆด์ธ Carsim๊ณผ MATLAB/Simulink๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด ๋•Œ ๊ฐœ๋ฐœํ•œ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜์˜ ๊ฐ•๊ฑด ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋™์ผ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด 100ํšŒ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ ํ•˜์˜€์œผ๋ฉฐ, ๋น„๊ต๋ฅผ ์œ„ํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ž๋™๋น„์ƒ์ œ๋™์žฅ์น˜๋ฅผ ํ•จ๊ป˜ ํ‰๊ฐ€ํ•˜์˜€๋‹ค.A robust autonomous emergency braking (AEB) algorithm for vulnerable road users (VRU) is studied. Autonomous emergency braking (AEB) is a system which helps driver to avoid or mitigate a collision using sensor information. After many kinds of AEB system is produced by automakers, researchers and automakers are currently focusing on VRU-related collisions. Vulnerable road users (VRU) usually defined as non-motorized road users such as pedestrian and cyclist. Although VRU are relatively slower than vehicle, VRU related collisions should be prevented due to their fatalities. Therefore, many researchers are trying to develop a VRU-AEB. In order to assess the risk of collision before it occurs, the motion of host vehicle and target VRU should be predicted. For this, dynamic models of host vehicle and target VRU is required. In the case of host vehicle, in order to judge whether a driver can avoid a collision or not, drivers evasive maneuver also should be predicted as well as normal driving maneuver. For this, the motion of the host vehicle is predicted using constant acceleration model. In the case of target VRU, since the identification between pedestrian and cyclist is difficult, safety performance of AEB should be guaranteed even if the type of the target is unclear. Therefore, the behavior of pedestrian and cyclist is described using a single constant velocity model. These predicted information is then used to judge whether a collision is inevitable or not. If a driver cannot avoid a collision with pre-defined limits and safety margin, then the proposed AEB system is activated to decelerate the vehicle. To guarantee the robust safety performance of AEB system, measurement uncertainty and prediction uncertainty are also considered while defining the safety margin. To evaluate the safety performance of proposed AEB system, simulation study is conducted via vehicle simulation tool Carsim and MATLAB/Simulink. To investigate the robust safety performance of the proposed AEB system, simulation study is repeated 100 times with same traffic scenario with uncertainties. Performance of the proposed AEB system is compared with the deterministic AEB which is introduced in this work.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Autonomous Emergency Braking System โ€“ Global Trend 4 1.3 Thesis Objectives and Outline 9 Chapter 2 Previous Researches 10 Chapter 3 Autonomous Emergency Braking Algorithm for Vulnerable Road Users 17 Chapter 4 Host Vehicle Motion Prediction 19 4.1 Host Vehicle State Estimation 20 4.2 Host Vehicle Evasive Maneuver Prediction 24 Chapter 5 Target VRU Motion Prediction 28 5.1 Target VRU State Estimation 29 5.2 Target VRU Motion Prediction 34 Chapter 6 Threat Assessment 35 6.1 Collision Judgement 35 6.2 Safety Boundary for Collision Judgement 39 6.3 Emergency Braking Mode Decision 42 Chapter 7 Simulation Result 43 Chapter 8 Conclusion 50 Bibliography 51 ๊ตญ๋ฌธ์ดˆ๋ก 59Maste
    • โ€ฆ
    corecore