2,692 research outputs found

    Semantic Segmentation of Remote-Sensing Images Through Fully Convolutional Neural Networks and Hierarchical Probabilistic Graphical Models

    Get PDF
    Deep learning (DL) is currently the dominant approach to image classification and segmentation, but the performances of DL methods are remarkably influenced by the quantity and quality of the ground truth (GT) used for training. In this article, a DL method is presented to deal with the semantic segmentation of very-high-resolution (VHR) remote-sensing data in the case of scarce GT. The main idea is to combine a specific type of deep convolutional neural networks (CNNs), namely fully convolutional networks (FCNs), with probabilistic graphical models (PGMs). Our method takes advantage of the intrinsic multiscale behavior of FCNs to deal with multiscale data representations and to connect them to a hierarchical Markov model (e.g., making use of a quadtree). As a consequence, the spatial information present in the data is better exploited, allowing a reduced sensitivity to GT incompleteness to be obtained. The marginal posterior mode (MPM) criterion is used for inference in the proposed framework. To assess the capabilities of the proposed method, the experimental validation is conducted with the ISPRS 2D Semantic Labeling Challenge datasets on the cities of Vaihingen and Potsdam, with some modifications to simulate the spatially sparse GTs that are common in real remote-sensing applications. The results are quite significant, as the proposed approach exhibits a higher producer accuracy than the standard FCNs considered and especially mitigates the impact of scarce GTs on minority classes and small spatial details

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201
    corecore