123,801 research outputs found
Action functionals for relativistic perfect fluids
Action functionals describing relativistic perfect fluids are presented. Two
of these actions apply to fluids whose equations of state are specified by
giving the fluid energy density as a function of particle number density and
entropy per particle. Other actions apply to fluids whose equations of state
are specified in terms of other choices of dependent and independent fluid
variables. Particular cases include actions for isentropic fluids and
pressureless dust. The canonical Hamiltonian forms of these actions are
derived, symmetries and conserved charges are identified, and the boundary
value and initial value problems are discussed. As in previous works on perfect
fluid actions, the action functionals considered here depend on certain
Lagrange multipliers and Lagrangian coordinate fields. Particular attention is
paid to the interpretations of these variables and to their relationships to
the physical properties of the fluid.Comment: 40 pages, plain Te
Janus and Multifaced Supersymmetric Theories
We investigate the various properties Janus supersymmetric Yang-Mills
theories. A novel vacuum structure is found and BPS monopoles and dyons are
studied. Less supersymmetric Janus theories found before are derived by a
simpler method. In addition, we find the supersymmetric theories when the
coupling constant depends on two and three spatial coordinates.Comment: 20 pages, no figures, typos, equations corrected. Additional comment
Intermittency of velocity time increments in turbulence
We analyze the statistics of turbulent velocity fluctuations in the time
domain. Three cases are computed numerically and compared: (i) the time traces
of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the
"dynamic" case); (ii) the time evolution of tracers advected by a frozen
turbulent field (the "static" case), and (iii) the evolution in time of the
velocity recorded at a fixed location in an evolving Eulerian velocity field,
as it would be measured by a local probe (referred to as the "virtual probe"
case). We observe that the static case and the virtual probe cases share many
properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is
clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR
Lagrangian Structure Functions in Turbulence: A Quantitative Comparison between Experiment and Direct Numerical Simulation
A detailed comparison between data from experimental measurements and
numerical simulations of Lagrangian velocity structure functions in turbulence
is presented. By integrating information from experiments and numerics, a
quantitative understanding of the velocity scaling properties over a wide range
of time scales and Reynolds numbers is achieved. The local scaling properties
of the Lagrangian velocity increments for the experimental and numerical data
are in good quantitative agreement for all time lags. The degree of
intermittency changes when measured close to the Kolmogorov time scales or at
larger time lags. This study resolves apparent disagreements between experiment
and numerics.Comment: 13 RevTeX pages (2 columns) + 8 figures include
- …
