56,355 research outputs found

    Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation

    Full text link
    We apply multivariate Lagrange interpolation to synthesize polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments

    About a non-standard interpolation problem

    Get PDF
    Using algebraic methods, and motivated by the one variable case, we study a multipoint interpolation problem in the setting of several complex variables. The duality realized by the residue generator associated with an underlying Gorenstein algebra, using the Lagrange interpolation polynomial, plays a key role in the arguments
    corecore