3,858 research outputs found

    Rate-cost tradeoffs in control

    Get PDF
    Consider a distributed control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is minimize a quadratic cost function. The most basic special case of that cost function is the mean-square deviation of the system state from the desired state. We study the fundamental tradeoff between the communication rate r bits/sec and the limsup of the expected cost b, and show a lower bound on the rate necessary to attain b. The bound applies as long as the system noise has a probability density function. If target cost b is not too large, that bound can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller's belief about the current state and the true state

    Design of State-based Schedulers for a Network of Control Loops

    Full text link
    For a closed-loop system, which has a contention-based multiple access network on its sensor link, the Medium Access Controller (MAC) may discard some packets when the traffic on the link is high. We use a local state-based scheduler to select a few critical data packets to send to the MAC. In this paper, we analyze the impact of such a scheduler on the closed-loop system in the presence of traffic, and show that there is a dual effect with state-based scheduling. In general, this makes the optimal scheduler and controller hard to find. However, by removing past controls from the scheduling criterion, we find that certainty equivalence holds. This condition is related to the classical result of Bar-Shalom and Tse, and it leads to the design of a scheduler with a certainty equivalent controller. This design, however, does not result in an equivalent system to the original problem, in the sense of Witsenhausen. Computing the estimate is difficult, but can be simplified by introducing a symmetry constraint on the scheduler. Based on these findings, we propose a dual predictor architecture for the closed-loop system, which ensures separation between scheduler, observer and controller. We present an example of this architecture, which illustrates a network-aware event-triggering mechanism.Comment: 17 pages, technical repor

    Rate-Cost Tradeoffs in Control

    Get PDF
    Consider a control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is to minimize a quadratic cost function in the state variables and control signal, known as the linear quadratic regulator (LQR). We study the fundamental tradeoff between the communication rate r bits/sec and the expected cost b. We obtain a lower bound on a certain rate-cost function, which quantifies the minimum directed mutual information between the channel input and output that is compatible with a target LQR cost. The rate-cost function has operational significance in multiple scenarios of interest: among others, it allows us to lower-bound the minimum communication rate for fixed and variable length quantization, and for control over noisy channels. We derive an explicit lower bound to the rate-cost function, which applies to the vector, non-Gaussian, and partially observed systems, thereby extending and generalizing an earlier explicit expression for the scalar Gaussian system, due to Tatikonda el al. [2]. The bound applies as long as the differential entropy of the system noise is not −∞ . It can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller's belief about the current state and the true state. Via a separation principle between control and communication, similar results hold for causal lossy compression of additive noise Markov sources. Apart from standard dynamic programming arguments, our technical approach leverages the Shannon lower bound, develops new estimates for data compression with coding memory, and uses some recent results on high resolution variablelength vector quantization to prove that the new converse bounds are tight

    Joint Wyner-Ziv/Dirty Paper coding by modulo-lattice modulation

    Full text link
    The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gel'fand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of "shaping" only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.Comment: Submitted to IEEE Transactions on Information Theory. Presented in part in ISIT-2006, Seattle. New version after revie

    Recent developments in quantum mechanics with magnetic fields

    Full text link
    We present a review on the recent developments concerning rigorous mathematical results on Schr\"odinger operators with magnetic fields. This paper is dedicated to the sixtieth birthday of Barry Simon.Comment: Update of the previous versions; some more references added and typos and some minor errors correcte

    Algorithms for Optimal Control with Fixed-Rate Feedback

    Get PDF
    We consider a discrete-time linear quadratic Gaussian networked control setting where the (full information) observer and controller are separated by a fixed-rate noiseless channel. The minimal rate required to stabilize such a system has been well studied. However, for a given fixed rate, how to quantize the states so as to optimize performance is an open question of great theoretical and practical significance. We concentrate on minimizing the control cost for first-order scalar systems. To that end, we use the Lloyd-Max algorithm and leverage properties of logarithmically-concave functions and sequential Bayesian filtering to construct the optimal quantizer that greedily minimizes the cost at every time instant. By connecting the globally optimal scheme to the problem of scalar successive refinement, we argue that its gain over the proposed greedy algorithm is negligible. This is significant since the globally optimal scheme is often computationally intractable. All the results are proven for the more general case of disturbances with logarithmically-concave distributions and rate-limited time-varying noiseless channels. We further extend the framework to event-triggered control by allowing to convey information via an additional "silent symbol", i.e., by avoiding transmitting bits; by constraining the minimal probability of silence we attain a tradeoff between the transmission rate and the control cost for rates below one bit per sample
    • …
    corecore